
SENTENCE SIMILARITY BASED TEXT

SUMMARIZATION USING CLUSTERS

A thesis submitted

In partial fulfilment of the requirements

For the degree of

MASTER OF TECHNOLOGY
In Computer Science & Engineering

by

SHIVAM MAURYA

(Enroll. No. 11104491898)

Under the Supervision of

Mr. Ramesh Vaishya
Sr. Lecturer

Department of Computer Science and Engineering

BBDNITM, Lucknow

to the

Faculty of Computer Science and Engineering

BABU BANARASI DAS UNIVERSITY
LUCKNOW

June 2013

i

DECLARATION

I hereby declare that this submission is my own work and that, to the best of my

knowledge and i belief, it contains no material previously published or written by

another person or material which to a substantial extent has been accepted for the award

of any other degree or diploma of the university or other institute of higher learning,

except where due acknowledgment has been made in the text.

Signature

Name: Shivam Maurya

Roll No. 1110449011

ii

CERTIFICATE

It is certified that Shivam Maurya (Roll No. 1110449011) has carried out the

research work presented in this thesis entitled “Sentence Similarity Based Text

Summarization Using Clusters” in partial fulfillment of the requirement for the

degree of Master of Technology from Babu Banarasi Das University, Lucknow under

my supervision. The thesis embodies results of original work, and studies as are

carried out by the student himself and the contents of the thesis do not form the

basis for the award of any other degree to the candidate or to anybody else from this or

any other University/Institution.

 Signature

 Mr. Ramesh Vaishya

 (Sr. Lecturer, Department of CSE)

 BBDNITM, LUCKNOW.

 Date:

iii

ABSTRACT

Early work in the computational treatment of natural language focused on

summarization, and machine translation. In my research I have concentrated on the area

of summarization of documents in similar sentence summarization using clusters. This

thesis presents my work on text similarity. This work enables the documentation of short

units of text (usually sentences) that contain similar information even though they are

written in similar sentence. I present my work on Similarity finder, a framework for text

similarity computation that makes it easy to experiment with considerations for

similarity computation and add support for similar sentence.

 A detailed examination and evaluation of the system is performed using

English data. I also apply the concept of sentence text similarity to summarization in two

similar sentence systems. The first improves readability of English summaries of text by

replacing machine translated sentences with highly similar English sentences when

possible. The second is a novel summarization system that supports comparative

analysis of documents. Sentence similarity clusters sentences to present information that

is supported by both similar sentence summarization using clusters. Second, the system

provides an analysis of how English documents similar by presenting information that is

supported exclusively by documents in English language. This novel form of

summarization is a first step at analyzing the similar in perspectives from news reported

in English.

Sentences are then selected for inclusion in the summary depending upon their relative

importance in the conceptual network. The sentences (nodes in graph) are then selected

for inclusion in final summary based on relative importance of sentence in the graph and

weighted sum of attached feature score. The user can find the document from their

internet and analyze all to sort out the relevant information. Analyzing the text by

reading all textual data is infeasible. So the technology of automatic document

summarizer may provide a solution to information overload problems. We propose an

extractive text summarization system. I proposed my work on sentence similarity

based computation that helps to experiment for similar text computation. Extractive

summarization text system choosing a subset of similar group from the text. Proposal

work i used the part of speech, proper noun, verb, pronouns such as he, she, and they

iv

etc. With the help of part of speech we find important sentence using statistical

method like proper noun and sentence similarity system .It based on internet

information that that contain picky sentence.

v

ACKNOWLEDGEMENT

The extensive endeavor that accompanies the successful completion of any task would

not be complete without the expression of gratitude to the people who made it possible. I

express my sincere thanks to our project guide Mr. Ramesh Vaishya (Sr.Lecturer,

Department of C.S.E) Babu Banarasi Das University, Lucknow. I thank him for all his

encouragement, valuable advices and suggestions throughout this thesis work.

I extend my whole-hearted thanks to all the staff of Computer science & Technology for

providing all facilities, valuable suggestions and constant supervision for the completion

of this work.

Last but not the least, I would like to acknowledge the ongoing support of my parents

and my family members, whose patience and encouragement during these long days and

night have been paramount in making this work a reality.

Shivam Maurya

(Roll No. 1110449011)

vi

LIST OF TABLES

3.1 Feature merging model training results using token and Identity Finder features with

Buck Walter + Probabilistic, Probabilistic, and Buck Walter translation. …………34

3.2 Feature merging model training results for token feature using Buck Walter

And Probabilistic, Probabilistic, and Buck Walter translation ……………………….35

3.3 Summary evaluation results. …………………………………. ……………… …44

3.4 Feature Score and rank of the all sentences……………………………………….54

vii

LIST OF FIGURES

2.1 Comparison of IR to Multiple Document Similarity……………………………….8

2.2 Two similar paragraphs; the primitive features indicating similarity that are

Captured by Similarity finder are highlighted bold……………………………….……..12

2.3 A composite feature over word primitives, with the restriction that one primitive

 Must be a noun and one must be a verb. ……………….……...12

2.4 A pair of paragraphs that contain a composite match; a word match and a WorldNet

match (highlighted in bold) occur within a window of five word excluding stop

word…………………..13

3.1 Similarity finder Architecture…………………………………………………………22

3.2 A system suggested replacement sentence for a machine translated English

Sentence …………………………………………..……………………………………….. 40

3.3 CAPS System Architecture . ……………..…….. . 47

3.4 Summary generation……………………………………………………………...52

3.5: Scaled network graph with threshold of 0.04……………………………………53

TABLE OF CONTENTS

Declaration i

 Certificate ii

Abstract iii

Acknowledgements v

List of Tables vi

List of Figures vii

 CHAPTER 1: INTRODUCTION 1-7

1.1 Goals 2

1.2 Research questions that this thesis answers include 2

1.3 Approaches to text similarity 5

1.4 Literature Survey 5

1.4.1 Highlighting Similarities between difference Data and text 6

1.4.2 Similarity-based approaches to Document Summarization 6

 1.5 Contributions 7

CHAPTER 2: SIMILARITY IN ENGLISH TEXTS: SIMILARITY

FINDER 8-20

2.1 Related work in English text similarity

 2.1.1 Information Retrieval 8

 2.1.2 Clustering Techniques 9

 2.1.2.1 Similarity measures using term overlap 11

 2.1.2.2 Clustering methods 12

 2.2 English similarity finder 13

 2.2.1 Similarity measure Combining Linguistics and Machine Learning 13

 2.2.1.1 Identifying and Relating Noun Phrases: LinkIT 16

 2.2.1.3 Learning Method and Results 16

2.2.2 Clustering Algorithm Tailored for Summarization 18

 2.3 A Flexible Framework for Similarity finder 20

 CHAPTER 3: SIMILARITY BASED TEXTS SUMMARIZATION 21-41

 3.1 Motivation 21

 3.2 Related work in sentence similarity based text summarization 22

 3.2.1 Example based machine translation 22

 3.2.3 Statistical machine translation 24

 3.2.4 Sentence alignment cost functions 24

 3.2.5 Lingual Phrase Translation 25

 3.3 Similarity finder Architecture 25

 3.3.1 Pre-processing 25

 3.3.2 Primitive Extraction 27

 3.3.3 Primitive Linking 29

 3.3.4 Similarity Computation 30

 3.3.5 Merging Feature Similarity Values 33

 3.3.5.1 Challenges for Lingual Feature Merging 34

 3.4 Clustering 35

 3.4.2.1 Word feature matching 35

 3.4.2.2 Using a probabilistic dictionary 35

 3.4.2.3 Named entity feature matching 36

 3.4.3 Learning a probabilistic English dictionary 36

 3.4.4 Feature Merging Model Training Data 36

 3.4.5 Training Results 39

 3.5.1 Extracting article text from web pages 39

 3.5.2 Using simple document translation for lingual clustering 40

 3.5.Lingual Clustering Evaluation 40

 3.6 similarity finder Conclusion 41

 CHAPTER 4: SUMMARIZATION VIA SIMILARITY 42-64

 4.1 Related work in sentence similar text document summarization 42

 4.2. Summarizing Machine Translated text with Relevant English Text 43

 4.2.1 Summarization Approach 44

 4.2.1.1 Sentence Simplification 45

 4.2.1.2 Similarity Computation 46

 4.2.1.3 System Implementation 46

 4.3.2 Evaluation 47

 4.3.2.1 Summary level evaluation 47

 4.3.2.2 Summary level evaluation results 47

 4.4 Summarization that indicates similarities and differences in content 49

 4.4.1 System Architecture 50

 4.4.1.1 Sentence Simplification to Improve Clustering 51

 4.4.1.2 Text Similarity Computation 52

 4.4.1.3 Sentence clustering and pruning 52

 4.4.1.4 Identifying cluster similar sentence 53

 4.4.1.5 Ranking clusters 54

 4.4.1.6 Sentence selection 54

 4.4.1.7 Summary generation 56

 4.4.2 Evaluation 58

 4.4.2.1SCUAnnotation 59

 4.4.2.2 Characterizing English content by SCUs 59

 4.4.2.3 Evaluating language partitions with SCUs 60

 4.4.2.4 Importance evaluation

 5.4.3 Results 60

 4.4.3.1 Per-language Partition Evaluation 61

 4.4.3.1.1 Extractive summary baseline 61

 4.4.3.2 Evaluating importance 62

 4.4.3.3 Example output 63

 4.4.4 Conclusions 64

 4.4.3 Results 64

 CHAPTER 5: CONCLUSIONS 65-71

 5.1 Contributions 65

 5.1.1 Linguistically motivated primitives 65

 5.1.2 Flexible framework for experimenting with lingual text similarity 66

 5.1.4 CAPS: Summarization that identifies similarities and differences 67

 5.2 Limitations 67

 5.2.1 Experimentation with more English primitives 68

 5.2.2 Better translation for named entities 68

5.2.3 Language feature sets and merging model 68

 5.2.3.1 Combining English training data 69

 5.3 Future Work 70

 5.3.1 Further integration of statistical machine translation methods 70

 5.3.2 Noun Phrase Variant Identification 70

 5.3.2.1 Related Work on Noun Phrase Variation 71

 5.3.3 Sense disambiguation 71

 REFERENCE 72-75

 LIST OF PUBLICATION 76

 CURRICULUM VITAE 77

M.Tech.(C.S.) Thesis by Shivam Maurya Page 1

CHAPTER 1

INTRODUCTION

There is a lot of text in the world. According to Global Reach's 2004 estimate, there

are295.4 million English-speaking people with access to the internet, and 544.5

million non- English speaking people with access to the internet.1 The Internet

Archive archives sites on the web, and has reached the size of approximately 1

petabyte of data and is currently growing at a rate of 20 terabytes per month.2. With

such a large amount of text, English and non-English alike, it is difficult to alter and

manage the information that people need. Information retrieval engines help people

and access the information that they desire, but what should one do when there is too

much information to readily handle?

Summarization is one important approach to managing the large amount of text that

people must read. Summarization can reduce the amount of text people have to read

to let them decide if a document is relevant to their information need. Since the

inception of using computers to process written text, one of the first tasks undertaken

was that of summarizing text by shortening a long document to present the

document's content brief while preserving the underlying meaning [20]. Edmundson

[1,3] proposed a method for weighting sentences using the keyword weighting

proposed by Luhn, and added weights based on a list of cue-phrases indicating good

and bad sentences, the words from titles and sub-titles, and the location of sentences.

In the mid-nineties statistical approaches to identifying sentences based on features,

such as those used by Edmundson, began to appear, as well as well as linguistics-

based approaches using discourse structure or more in-depth parsing of the text

While the field of single document summarization has advanced considerably, early

efforts focused mainly on monolingual text processing - English speaking people

summarized English documents, Russian speaking people summarized Russian

documents, Japanese speaking people summarized Japanese documents, and so on

As progress was made in single document summarization, researchers began to study

multi-document summarization. Given five or ten documents on the same event (e.g.,

multiple documents reporting on developments in

M.Tech.(C.S.) Thesis by Shivam Maurya Page 2

The same court case), the goal is to produce a short summary that gives an overview

of all the documents. One approach to document summarization that has proven

effective and gained popularity is similarity-based summarization.

The principle behind similarity-based summarization is that important information is

repeated in different reports on the same event. Reporters for the New York Times

and Los Angeles Times are going to both emphasize the same important facts in

independently written articles on the same event. In a report about a specific trial, for

instance, both reporters will state who the defendant and prosecutors are in the trial,

and what charge the defendant is accused of. Identifying this repeated, important

information is the approach taken in similarity based summarization systems. A

similarity based summarization system identifies when sentences (or paragraphs, or

clauses) state the same information. Sentences that are repeated many times across

many documents are assumed to be more important than sentences that are not

repeated, and a summary can be built by including information that has been

repeated often. While most summarization systems are extractive, i.e., they take one

of the sentences from the input documents verbatim and include it in a summary,

some state-of-the-art summarization systems analyze the similar sentences and re-

formulate a new sentence including only the specific similar information.

This thesis brings a similarity-based mostly extractive approach to multiple

documents written in similar sentence. I present similarity finder, a framework I

developed for identifying similar sentences within and between texts in multiple

sentences. I have performed an evaluation of the system using English. I show the

usefulness of my approach to similar text similarity for summarization tasks by

presenting and evaluating two similar summarization systems. This thesis presents

Similarity Finder, the system I developed as a framework for similar text similarity

computation, examines the value of translation at similar levels and similar

primitives for lingual similarity computation, and shows the implementation of a new

summarization approach for similar document collections that shows both

similarities and similarities between the documents across similar sentences.

1.1 Goals

There are two main goals for this thesis: to introduce my work in lingual text

similarity, and to show that the system I built for the task can be used as the basis of

similar document summarization system. Similarity finder, a system I developed for

similar text similarity, is described and evaluated in a sentence and clustering-level

evaluations of English text. Another contribution of the thesis is an approach to

M.Tech.(C.S.) Thesis by Shivam Maurya Page 3

similar document summarization that shows similarities in documents, as well as

similar between them which use Similarity finder I first introduce related work that

has been done on English text similarity in the Similarity finder system that forms

the basis of my work on a similar version of Similarity finder called Similarity

finder. Similarity finder was developed at Columbia University under the supervision

of Judith Klavans and Kathy McKeown, and I have also worked on Similarity finder

improvements and maintenance. I use this past work on Similarity finder to motivate

that the approach Similarity finder takes is best suited for text similarity computation

between small units of text (sentences or paragraphs) compared to the alternative of

bag-of-words approaches used in information retrieval or document clustering.

In the Similarity finder approach, similar primitives, such as words that are nouns or

words that are verbs are identified, and similarity is computed over all of these

features. For to sentences, Similarity finder will compute how similar those sentences

are based on each feature, and it combines all the similarities into a single similarity

value representing the overall similarity of the two sentences. For example, in the

following two sample sentences.

The noun primitives from Sentence 1 are (student, program) and from Sentence 2 are

(athlete, race). The verb primitive in both sentences is (ran). Two features, verb

similarity and noun similarity, are computed over the two primitive types, and while

similarity is high over the verb feature they both share the same and only verb it is

low over the noun feature. None of the nouns are the same.

My work on Similarity finder extends the approach taken in Similarity finder to

enable text similarity computation. Similarity finder identifies primitives in text in

similar text, and makes it easy to add support for new primitive types. Features are

easy to define over different primitive types, allowing for experimentation in both

primitive types, and features computed over the primitives. Similarity finder

introduces a translation stage that maps primitives from one language to another to

enable matching primitives across English texts without using full machine

translation on the non-English documents. Similarity finder can identify similar text

across languages using only simple techniques for primitive translation. Similarity

finder is designed to make it straightforward to add support for new languages, and it

has been tested with minimal modifications over text from. This thesis will show that

Similarity finder, using simple techniques that can be quickly applied to other

language, performs with high precision at identifying similar sentences across

language.

The second main goal of this thesis is to present two summarization systems that

have been built on top of the text similarity computation technology in Similarity

M.Tech.(C.S.) Thesis by Shivam Maurya Page 4

finder. The systems validate that Similarity finder is a useful similar text similarity

computation engine. The first system takes a novel approach to improving the

readability of English summaries of machine translated English data. It produces a

summary of machine translated English text, and uses Similarity finder to identify

English sentences that are similar to the machine translated summary sentences,

replacing them if the two are similar enough.

Research questions that this thesis answers include

� Can a system automatically identify similar sentences across similar

sentence?

� If so, at what levels should translation be used? At the word level? At

the level of Noun phrases? Can translation at lower levels compete

with full machine translation? At the sentence level?

� Can a system that identifies similar sentences across text be used for

similar sentence summarization?

� Can sentence similarity be applied to improve summaries of machine

translated text? Will cross-similar sentence similarity allow for the

creation of summarization systems that present similar in perspective

across languages by summarizing similarities and similar across the

input documents?

Approaches to text similarity

English version of Similarity finder, a program for computing the similarity of

English sentences and clustering them. Similarity finder was designed by other

people at the Columbia University Natural Language Processing group, most notably

Judith Klavans, Vasileios Hatzivassiloglou, and Melissa Holcombe. Similarity finder

introduced the idea of using shallow linguistic features computed over the input text

and a statistical model to combine those features into a similarity value between the

sentences. Similarity finder also uses a clustering approach tuned to the task of

clustering similar sentences. The shallow linguistic features encode information that

can be derived by part-of-speech tagging or word lookup in lexical taxonomies such

as word Net [22].

In my thesis I compared a comparison of the Similarity finder approach to text

similarity and other text similarity measures as used in information retrieval,

document clustering, or other natural language processing tasks. I have extended the

approach exemplified by Similarity finder to similar sentence in Similarity finder, a

similar re-implementation of Similarity finder. Similarity finder is described.

Similarity finder is designed to allow for easy addition of new primitives and features

for comparing text, and I present an in-depth description of the English support in

Similarity finder. Chapter 4 presents an evaluation of how well Similarity finder is

able to identify English sentences that are similar to other sentences. The usefulness

M.Tech.(C.S.) Thesis by Shivam Maurya Page 5

of Similarity finder as a cross-lingual text similarity computation system is verified

by using it as the basis for two summarization systems.

Literature Survey

H.P Luhn is the father of information retrieval. In his pioneering work used simple

statistical technique to develop an extractive text summarization system. Luhn used

frequency of word distributions to identify important concepts, i.e. frequent words, in

the text. As there could be uninformative words which are highly frequent

(commonly known as stop words), he used upper and lower frequency bounds to

look for informative frequent words. Then sentences were ranked according to the

number of frequent words they contained. The criterion for sentence ranking was

very simple and would read something like this-

If the text contains some words that are unusually frequent then the sentences

containing those words are important. This quite simple technique which uses only

high frequent words to calculate sentence ranking worked reasonably well and was

modified by others to improve performance. Luhn provide a framework which can be

used to measure various feature score for each text in the document. I used this

approach with the weight of each term in the text instead of only frequency.

Edmund son’s work exploiting cue phrases: Luhn's work was followed by H. P.

Edmundson who explored the use of cue phrases, title words and location heuristic.

Edmund son tried all the combinations and evaluated the system generated

summaries with human produced extracts.

The disadvantage of previous work is that they provide summary by cumulative

effect various key features like-

1- Sentence position

2- Title adhoc

3-Numerical data

4-Noun world

1.3 Similarity-based approaches to Document Summarization

Similarity based summarization approaches are not new in the area of

summarization. Similarity based summarization is an accepted, well-respected

approach to document summarization. While there are many summarization systems

that use similarity-based approaches, they are typically applied to monolingual

summarization systems. Similarity finder allows the approach to be applied to lingual

document summarization systems. Similarity finder takes documents in multiple

languages as input, and outputs similarity values for pairs of sentences within and

across languages. Chapter 5 presents two systems that use the similarity values

output by Similarity finder. One system summarizes machine translated text and

M.Tech.(C.S.) Thesis by Shivam Maurya Page 6

replaces sentences with very similar English sentences to improve the readability of

the summary.

1.3.1 Highlighting Similarities between difference Data and text

A second summarization system using Similarity finder is novel in that it presents a

summary in three parts that indicates both similarities and differences in the input.

The CAPS system (Comparing and Contrasting Program for Summarization)

described in Section 5.4 takes a cluster of English documents on the same topic as

input. It generates a summary in three parts: information that is only present in the

text, information that is only present in the English text and information that is

supported by both the English text. While much previous work in summarization has

been done on indicating similarities, very little work has been done on indicating

differences between documents, or as in this case, groups of documents.

1.1 Contributions

1. Flexible framework for single lingual text similarity experimentation. I developed

v, which supports rapid development of features for similarity computation for text,

and support for different translation mechanisms over those primitives. This

framework has allowed me to experiment with different combinations of primitives

and translation methods as presented in

2. Experimentation with and evaluation of different levels of translation for single

lingual text similarity identification. I have examined how translation can be used at

different levels for lingual text similarity identification. I have compared full

document translation using machine translation systems to primitive level translation

that translates at the word level and translation of phrases extracted from the

documents.

3. A focus on methods that is easily portable to new sentence. The main sentence pair

presented in this thesis is English, but I have also used Similarity finder with very

little engineering required to add support for that sentence. Using existing bilingual

dictionaries for translation, or learning dictionaries from large collections of text and

their translations (parallel corpora) allows one to quickly add support for similar text.

4. Investigating primitives for similarity, and translating primitives across sentences.

An original contribution of this work is the investigation of primitives that are

compatible across sentences for the similarity computation process and methods of

translating those primitives. Similarity computation performed over primitives and

their translations extracted from the native sentence is more easily extensible to

sentence for which we do not already have a full machine translation system. For

high precision tasks requiring identification of English sentences, translation at the

primitive level performs better than similarity computation using machine translated

M.Tech.(C.S.) Thesis by Shivam Maurya Page 7

input documents. In this work, I investigate word-level primitives, and named entity

based noun phrase primitives for similarity computation text in English. This work

takes the first steps to identifying further primitives that may be helpful for cross-

sentence similarity computation, and presents a framework for continued research in

this area.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 8

CHAPTER 2

SIMILARITY IN ENGLISH TEXTS: SIMILARITY FINDER

The concept of textual similarity is used in many applications that involve matching

one text to another, such as information searching or retrieval, categorizing texts into

pre-defined categories, filtering text, and text clustering. In these cases the similarity

of a document is computed between a query, a category, a filter, or other documents.

The work in this thesis is primarily concerned with text similarity at a lower

granularity: typically the sentence or paragraph level.

Similarity finder is a system designed and implemented for identifying similar units

of short text, either paragraphs or sentences, and clustering related sentences into

themes that express the same information. Similarity finder has been used in multiple

summarization and question-answering systems. This chapter describes the

Similarity finder system as implemented for English. I build upon the work done on

Similarity finder by re-implementing a version that performs similarity identification,

Similarity finder, described in Chapter 3.

2.1 Related work in English text similarity

2.1.1 Information Retrieval

The concept of similarity is critical in the Information Retrieval field. The vector-

based document model as popularized by Salton's SMART system [33] represents a

document as a word vector, and queries are matched to similar documents in the

document database via a similarity metric. The word-vector based document

representation views documents as collections of words, without regard to the

original word order, or syntactic function of the words; such systems do not have

information about which words are nouns or verbs, or what words are the

grammatical subject or object.

The task for information retrieval is to return a list of documents that are similar to a

given query. Depending on the information retrieval system, the format of the query

might be a document itself, a Boolean expression, a set of terms, and so on. In a

standard vector-space information retrieval engine, the query document is mapped

into the word vector space, and its distance to the other documents in the word-vector

space is computed.

The similarity between the documents and the vector-space representation of the

query is often calculated using a distance metric, such as the Euclidean distance, or

M.Tech.(C.S.) Thesis by Shivam Maurya Page 9

the cosine of the angles between the two vectors. The documents are then ranked on

the basis of this similarity measure, and the list is returned to the end user.

In the task that I examine, there is no concept of a query to which all text units are

compared. Instead, each text unit must be compared to every other text unit to

compute similarity for the pair. The features that I compare similarity over are also

context dependent while some of the primitives are similar to the vector-space model

used in IR (simple overlap between words stems and tokens, for example), others

features are more complex ,like features that require the two text units to have the

same noun phrase followed by the same verb. Illustrates the differences between

similarity determination and information retrieval.

The full text documents used in information retrieval system contrast with the text

units used in similarity finder for similarity comparison, which are much shorter,

being sentences or even clauses. This leads to a data sparsely problem. Since the

documents are larger, they tend to use a more varied vocabulary, so there is a larger

possibility for overlap with the query when examining specific text units there just is

not as much text, and so a particular set of terms is more likely to be missing. Since

there is much less data to deal with compared to the full text of documents, it is more

important to use more evidence than just distances based on the word vectors of the

documents. For this reason, similarity finder uses a variety of features built over

different primitives, such as nouns or verbs that investigate similarity in a number of

linguistically motivated areas.

2.1.2 Clustering Techniques

Similarity finder uses clustering in two ways:

� document clustering as a pre-input stage to similarity finder for identifying

documents that are on the same topic

M.Tech.(C.S.) Thesis by Shivam Maurya Page 10

 Figure 2.1: Comparison of IR to Multiple Document Similarity

� Clustering text units via their similarity to create the output text \themes"

Cluster analysis is a general technique for multivariate analysis that assigns

items to groups automatically based on a similarity computation. Cluster

analysis has been applied to Information Retrieval to provide more efficient

or more effective retrieval, and to structure large sets of retrieved documents.

When applying clustering to text documents, the attributes over which the

clustering is performed and their representation must be selected, and a

clustering method and similarity measure must be chosen.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 11

When applied to information retrieval, data sets are often very large, from hundreds

to tens of thousands of documents, which necessitate an efficient representation for

processing the documents. The documents are usually represented as word-space

vectors.

2.1.2.1 Similarity measures - using term overlap

In a survey of document clustering techniques, Rasmussen 1992 [9] finds that the

similarity measures used for clustering are easy to compute based on term counts,

usually the Dice coefficient, Jaccard coefficient, or cosine coefficient. These

measures are computed based on the term occurrences in the documents.

Where SDi, Dj is the Similarity of Document i compared to Document j, L is the

total number of different words in the corpus, and weight ik is the weight of term k in

documents i. The Dice coefficient takes into account the shared terms between two

documents, and all of the separate occurrences of the terms in each of the documents.

In Champollion, a system for statistical identification of collocation translations [8],

the Dice coefficient is used as the similarity measure between collocations in

different languages, since the Dice coefficient uses information on joint occurrences,

and is not affected by cases where the term does not occur in either document.

Jaccard coefficient:

The Jaccard coefficient also takes into account the terms shared between two

documents, but normalizes based on the union of the terms.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 12

The cosine coefficient is commonly used in information retrieval applications, and

measures the \angle" between two documents represented as word-space vectors. The

calculation is quick to perform, and insensitive to the number of occurrences of terms

in the document.

For efficiency reasons, these similarity measures are computed using only term

overlap; usually concepts such as term order, predicate-argument structure, and so on

are ignored. Due to the sparse nature of the data when using text units the size of a

sentence or paragraph, term overlap alone is not sufficient for our task. Similarity

finder uses multiple linguistically motivated complex features to compute a

similarity measure. These complex features have been shown to improve clustering

performance for our data when compared to using only term overlap, evaluating

clustering performance on one of our test data sets. Previous work on document

clustering has not shown any clear preference of similarity measure (Rasmussen

1992 [9],) although the three listed above are often used in information retrieval due

to their ease of implementation and the property of normalizing for length.

2.1.2.2 Clustering methods

There are two general classes of clustering methods, hierarchical and non-

hierarchical. When applying these methods to document clustering, especially for

information retrieval, the algorithms used are honed for efficiency so large document

sets can be clustered. What differentiates the methods used is how similarity between

points (documents or clusters) is computed. In the single link method, the closest

previously unlinked points are joined, when distance between two clusters is defined

as the distance between the closest two points between the clusters. The complete

link method merges clusters based on the sum of the distances between all pairs of

documents in two clusters. The group average takes the average distance of all pairs

of documents in the two clusters as the distance. Ward’s method merges the clusters

whose merge minimizes the increase in the total within-group variance.

Studies have been conducted to examine which clustering methods are best for

clustering large document sets. Voorhees [36] compared the single link, complete

link, and group average methods of hierarchical clustering on document collections

of up to 12,684 documents, and found that complete link was most effective for

larger collections with complete and group average link comparable for smaller

M.Tech.(C.S.) Thesis by Shivam Maurya Page 13

collections. El-Hamdouchi and Willet compared the same methods plus Ward's

method on document sets of up to 2,361 documents, and found that the group

average method was most effective for document clustering. Hatzivassiloglou et al.

[10] examine single link, complete link, group average, and single pass clustering

methods using linguistic features in the distance metric for document clustering.

They found in tests using as many as 40,000 documents that group average was the

best clustering method, and that inclusion of linguistic features improved overall

performance.

2.2 English similarity finder

The similarity finder program was developed to identify short passages of text that

are similar to each other from a set of multiple documents on the same topic.

Similarity finder has been developed to work with text from the domain of edited

news text, where sentences often constitute entire paragraphs. As a pre-processing

stage to similarity finder, documents are often sentence segmented, but in the news

domain it can be helpful for similarity finder to use paragraphs, rather than sentences,

as the unit of text because a paragraph is more likely to contain background

information (such as proper nouns) relevant to semantic comparison. Similarity

finder uses many linguistically-motivated primitives for short-passage-level, either

sentence or paragraph, similarity detection.

2.2.1 Similarity measure - Combining Linguistics and Machine

Learning

Similarity finder identifies similar pieces of text by computing similarity over

multiple features. There are two types of features, composite features, and unary

features. All features are computed over primitives, syntactic, linguistic, or

knowledge-based information units extracted from the sentences. Both composite

and unary features are constructed over the primitives. Hatzivassiloglou et al.'s 2001

paper on similarity finder [14], illustrates some example primitives extracted by

similarity finder through the use of two example similar paragraphs from the

similarity finder training corpus. Typical types of primitives that are extracted by

similarity finder include part-of-speech based primitives like all nouns, all verbs, or

all adjectives. From the example, the verb primitives in the first sentence are (make,

voice), and in the second sentence are (reject, mediate, say, invite, come, asses).

While there are not any matches on the verb primitive type, there are matches on the

noun and stemmed token primitive types, shown in the example in bold type. Unary

features are feature that compare two sentences based on the overlap of a single

primitive between the sentences, such as stemmed tokens or nouns. A unary feature

over primitive p computes the similarity as the number of primitives of type p the

two sentences

M.Tech.(C.S.) Thesis by Shivam Maurya Page 14

U.N. Human Rights Commissioner Mary Robinson made a landmark visit

to Mexico at the government's invitation after voicing alarm last year of

violence in the country's conflict-torn southern state of Chiapas.

Mexico's government last year rejected suggestions the United Nations

might mediate in the long running Chiapas conflict, saying it could solve its

own internal affairs. But it did invite Robinson and a special rapporteur on

extrajudicial killings to come and assess human rights for themselves in the

country.

Figure 2.2: Two similar paragraphs; the primitive features indicating similarities that

are captured by similarity finder are highlighted in bold.

Figure 2.3: A composite feature over word primitives, with the restriction that one

primitive must be a noun and one must be a verb.

Share in common divided by the number of unique primitive’s p in the two

sentences. Unary features return a floating point similarity value in the range of 0{1.

The more complex composite features return similarity values of either 1 or 0, and

take two types of primitives.

The composite feature returns 1 if the two sentences both have instances of the

primitives specified by the composite feature that match any restrictions on the

composite feature(that the primitives appear in the same order, or are within a certain

number of words from each other.) Figure 2.3 and Figure 2.4 illustrate two types of

composite feature matches.

The paragraphs in Figure 2.2 have quite a few words in common, including

government ,last, year, and country. They share several proper nouns: Robinson,

Mexico, and Chiapas, which one might intuitively think should be weighted more for

a match. Other similarities include words with the same stem, such as invitation and

invite, and semantically related words such as killings and violence. Each of the

An OH-58 helicopter, carrying a crew of two, was on a routine training

orientation when

contact was lost at about 11:30 a.m. Saturday (9:30 p.m. EST Friday)

There were two people on board," said Bacon. \We lost radar contact with the

helicopter

About 9:15 EST (0215 GMT)."

M.Tech.(C.S.) Thesis by Shivam Maurya Page 15

these matches between words with the same stems are examples of matches on the

stemmed token primitive, while the matches

Boris Yeltsin was hospitalized Monday with what doctor’s suspect is pneumonia,

the latest Sickness to beset the often ailing 68-year-old Russian president.

Yeltsin has been hospitalized several times in the past three years, usually with

respiratory Infections, including twice for pneumonia in 199 and 1998. The

Kremlin tends to hospitalize The ailing president at the first sign of illness.

Figure 2.4: A pair of paragraphs that contain a composite match; a word match and

Award Netmatch (highlighted in bold) occur within a window of five words,

excluding Stopwords.

Between Mexico and Robinson are also matches on the Link IT noun phrase

primitive, described in more detail in Section 2.2.1.1. The primitive features include

several ways to define a match on a given word: considers matches involving

identical words, as well as words that matched on their stem, as noun phrase heads

ignoring modifiers, and as word Net [22] synonyms. The matches of primitive

features can be further constrained by part of speech and combined to form

composite features attempting to capture syntactic patterns where two primitive

features have to match within a window of five words (not including stopwords). The

composite features approximate in these manner syntactic relationships such as

subject-verb or verb-object (see Figure 2.3, also from their paper). In other cases, a

composite feature can serve as a more effective version of a single primitive feature.

For example, Figure 2.4 illustrates a composite feature involving word Net primitives

(i.e., words match if they share immediate hyponyms in word Net) and exact word

match primitives. On its own, the word Net feature might introduce too much noise,

but in conjunction with the exact word match feature it can be a useful indicator of

similarity.

2.2.1.1 Identifying and Relating Noun Phrases: Link IT

One of the important features used in Similarity finder is the Link IT feature, which

indicates Matches based on the heads of noun phrases. The motivation behind this

primitive is my previous work using Link IT for document characterization,

indexing, and browsing.

I developed Link IT as a document analysis and characterization system. Link IT

identifies noun phrases in documents, and relates noun phrases within a document. I

builtva grammar for noun phrase detection over part-of-speech tagged text for

identification of noun phrases in documents, and a parser that builds links between

the nouns phrases as they are extracted. Within a single document, noun phrases with

the same head are linked together. Yarowsky [40] shows that with a single document,

and often a single coherent collection, words tend to be used in the same sense, so

M.Tech.(C.S.) Thesis by Shivam Maurya Page 16

linking together instances of the noun phrases on the head brings together

semantically related concepts. Presenting the list of related noun phrases can help to

disambiguate the sense of the head by providing more contexts to the term.

The use of noun phrases as index terms leads to a high quality browsing interface ,as

shown in [38] which describes Intel Index, a document browsing index for Digital

Libraries built using the output of Link IT to enable browsing by noun phrases. Noun

phrases have also been shown to be useful in two other NLP tasks which depend

critically on similarity: information retrieval and document clustering. D. A. Evans

and C. Zhai [8]examine the use of noun phrases as index terms in an information

retrieval engine, and found that indexing based on components of complex noun

phrases improves both precision and recall. Noun phrases and proper noun phrases

were shown to have a significant benefit in improving performance of the document

clustering system described in Hatzivassiloglouetal. 2000 [10]. These applications of

noun phrases to similarity based tasks indicate that they are a useful area to focus on

for lingual similarity detection.

2.2.1.3 Learning Method and Results

With such a large number of features available to Similarity finder to use, one would

like to have a way to automatically choose those features that are most helpful for the

similarity identification task. Some of the features may have high values for all

sentences, including those which are not similar, while more useful features will

have high values for similar sentences only. To determine which features are useful,

a training set of similar and dissimilar sentences created, and a machine learning

framework is used to identify which features are important over the training data.

A data set consisting of 10,535 manually marked pairs of paragraphs from the

Reuters part of the 199 TDT pilot corpuses was developed. Each pair of paragraphs

was judged by two human subjects, working separately. The subjects were asked to

make a binary determination on whether the two paragraphs contained \common

information". This was defined to be the case if the paragraphs referred to the same

object and the object either

(a) Performed the same action in both paragraphs, or

(b) Was described in the same way

In both paragraphs. The subjects were then instructed to resolve each instance about

which they had disagreed. In this and subsequent annotation experiments they found

significant disagreements between the judges, and large variability in their rate of

agreement (kappa statistics between 0.08 and 0.82). The disagreement was however

significantly lower when the instructions were as specific as the version above and

those annotators were able to resolve their differences and come with a single label

of similar or not similar when they conferred after producing their individual

judgments. The level of similarity that is represented in the training data and that

Similarity finder to recover automatically is much more one grained than in a typical

information retrieval application; going from topical similarity down to the level of

propositional content similarity. This same training data is also re-used to train the

English component of Similarity finder.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 17

The first version of Similarity finder output binary similarity values for each pair of

input sentences using a rule-based classifier learned from the training data over the

features that Similarity finder computed for each sentence pair. Similarity finder used

a classifier trained over both primitive and composite features using RIPPER [5].

RIPPER produces a set of ordered rules that can be used to judge any pair of

paragraphs as similar or non-similar. Using three fold cross-validations over the

training data, RIPPER included 11 of the 43 features in its final of rules and achieved

44.1% precision at 44.4% recall. The ten unary features were word overlap, proper

noun overlap, Link IT overlap, verb overlap, noun overlap, adjective overlap, word

Net overlap, word Net verb overlap, verb overlap, and stem overlap. One composite

feature was selected, word Net collocation, which is a match between the WorldNet

primitive and the word primitive (see [13] for more details on the various features).

The selection of eleven features rather than just words validates the claim that more

than word matching is needed for effective paragraph matching for summarization.

The claim is also verified experimentally; the standard TF*IDF measure [34], which

bases similarity on shared words weighted according to their frequency in each text

unit and their rarity across text units, yielded 32.6% precision at 39.1% recall. They

also measured the performance of a standard IR system on this task; the SMART

system [2], which uses a modified TF*IDF approach, achieved 34.1% precision at

36.% recall.

21 of the 43 original features were normalized according to the matching primitives'

IDF scores (the number of documents in the training collection they appear in).

RIPPER selected none of those features, which suggests that TF*IDF is not an

appropriate metric to use in evaluating similarity between small text units in a system

such as ours. This observation makes sense given that in Similarity finder the

collection of documents from which document frequency is calculated has been

altered by topic and date. Thus, a primitive that would be rare in a large corpus could

have an abnormally high frequency in the relatively small set of related documents

on which Similarity finder operates.

The current version of Similarity finder, Similarity finder1.1, changed the machine

learning approach to allow for values of similarity in the full range between 0 and 1

rather than the \yes"/\no" decisions that RIPPER supports. Such real-valued

similarities enable the clustering component of Similarity finder to give higher

weight to paragraph pairs that are more similar than others. Similarity finder1.1 uses

a log-linear regression model to convert the evidence from the various features to a

single similarity value. This is similar to a standard regression model (i.e., a weighted

sum of the features) but properly accounts for the changes in the output variance as

we go from the normal to the binomial distribution for a response between 0 and 1

[26].

A weighted sum of the input features is used as an intermediate predictor, ή which is

related to the final response R via the logistic transformation

M.Tech.(C.S.) Thesis by Shivam Maurya Page 18

Via an iterative process, stepwise refinement, the log-linear model automatically

selects the input features that increase significantly the predictive capability of the

model, thus avoiding overlearning. Their model selected input features, and resulted

in a remarkable increase in performance over the RIPPER output (which itself

offered significant improvement over standard IR methods), to 49.3% precision at

52.9% recall. The seven features selected are a sub-set of the features selected by

RIPPER: six unary features, word stem overlap, noun overlap, verb overlap,

adjective overlap, word Net overlap, proper noun overlap, and Link IT overlap. The

single composite feature selected matches to the word Net primitive and a word

primitive. As in the case of the RIPPER model, the automatic selection of multiple

features in the log linear model validates the hypothesis that more than

straightforward word matching is needed for effectively detecting similarity between

small pieces of text. The focus on noun phrases, as seen by the selection of the Link

IT feature, is also continued in this model.

2.2.2 Clustering Algorithm Tailored for Summarization

Once similarities between any two text units have been calculated, they are fed to a

clustering algorithm that partitions the text units into clusters of closely related ones.

Similarity finder clustering algorithm [14] departs from traditional IR algorithms,

and is instead tailored to the summarization task's requirements. In Information

Retrieval, hierarchical algorithms such as single-link, complete-link, and group wise-

average, as well as online variants such as single pass are often used [9]. Compared

to non-hierarchical techniques, such algorithms trade some of the quality of the

produced clustering for speed [18], or are sometimes imposed because of additional

requirements of the task (e.g., when documents must be processed sequentially as

they arrive). For summarization, however, the distinctions between paragraphs are

often one-grained, and there are usually much fewer related paragraphs to cluster

than documents in an IR application.

Similarity finder uses a non-hierarchical clustering technique, the exchange method

[Sp a85], which casts the clustering problem as an optimization task and seeks to

minimize an objective function measuring the within-cluster dissimilarity in a

partition P = fC1;C2; : : : ;Ckg

Where the dissimilarity d(x; y) is one minus the similarity between x and y. The

algorithm proceeds by creating an initial partition of the text units that are to be

clustered, and then looking for locally optimal moves and swaps of text units

M.Tech.(C.S.) Thesis by Shivam Maurya Page 19

between clusters that improve until convergence is achieved. Since it is a hill

climbing method, the algorithm is called multiple times from randomly selected

starting points, and the best overall configuration is selected as the final result.

The clustering method is further modified to address some of the characteristics of

data sets in summarization applications. To reduce the number of paragraphs

considered for clustering, an adjustable threshold is imposed on the similarity values,

ignoring paragraph pairs for which their evidence of similarity is too weak. By

adjusting this threshold, the system can be made to create small, high-quality clusters

or large, noisy clusters as needed. Since every paragraph in that altered set is similar

to at least another one, an additional constraint on the clustering algorithm to never

produce singleton clusters is imposed.

Similarity finder also uses a heuristic for estimating the number of clusters for a

given set of paragraphs. Since each cluster is subsequently transformed into a single

sentence of the final summary, many small clusters would result in an overly lengthy

summary while a few large clusters would result in a summary that omits important

information. Similarity finder uses information on the number of links passing the

similarity threshold between the clustered paragraphs, interpolating the number of

clusters between the number of connected components in the corresponding graph

(few clusters, for very dense graphs) and half of the number of paragraphs (lots of

clusters, for very sparse graphs). In other words, the number of clusters c for a set of

n text units in m connected components is determined as

Where L is the observed number of links and p is the maximum possible Number of

links. Similarity finder uses a non-linear interpolating function to account for the fact

that, usually, L is less than or equal to P. The features selected for use with the log-

linear regression model are word stem overlap, noun overlap, verb overlap, adjective

overlap, word Net class overlap, proper noun overlap, and Link IT overlap. [14]

presents further details as well as an evaluation of Similarity finder, and its

application in two summarization systems.

2.3 A Flexible Framework for Similarity finder

I present work that uses Similarity finder with machine translated text as input. I also

apply syntactic sentence simplification to English text that is used as input, thus

M.Tech.(C.S.) Thesis by Shivam Maurya Page 20

reducing sentence length and removing context. In both of these cases, Similarity

finder is being used with input that is different from the sort of input used in its

training, and so I made some modifications to the system to improve performance

under these conditions.

Using Similarity finder to compute similarity between machine translate English

sentences and English sentences, and details an altering step that I added which alters

out sentences that are often not similar but that Similarity finder labels as similar

when using syntactically simplified sentences and machine translated input. The alter

removes sentence pairs with a cosine similarity below the threshold of 0.1, which has

a 6% accuracy of identifying sentences that humans judged as not similar despite

having a high Similarity finder similarity score.

Similarity finder presents the starting point for my original work in the area of

lingual sentence similarity. Similarity finder, presented in full in Chapter 3, is a re-

implementation of the ideas from Similarity finder, along with a framework that

allows for easier addition of features and primitives, and a translation stage for

relating primitives across languages. The ability to easily create new primitives is

important for lingual similarity, as different languages can have vastly different

computational resources available. With Similarity finder it is possible to define the

primitives and features to use at run-time in a configuration, allowing one to use

Similarity finder with different languages without modification of the program itself,

which would not have been possible with Similarity finder.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 21

CHAPTER 3

SIMILARITY BASED TEXTS SUMMARIZATION

Similarity finder is a re-implementation of the English version of Similarity finder.

Focuses on adding support for computing similarity between multiple languages by

making it easy to add new features and primitives. This chapter presents previous

work in lingual text similarity, the approach I have taken to English language text

similarity, the architecture of the Similarity finder system, and a description of the

work required to add support for the language to Similarity finder.

3.1 Motivation

There are many applications of text similarity in Natural Language Processing.

Approaches to multi-document summarization using text similarity have excelled at

identifying content that is repeated and emphasized in the document set, and are able

to take advantage of the identification of repetition to include important information

and reduce redundancy in the summary. Text similarity measures have also been

used in question answering systems, again to indicate importance via identifying

repetition of text, and to reduce redundancy. Other opportunities for monolingual text

similarity are for plagiarism detection and the detection of similar patent applications

in an overburdened patent filing office. One area that has not seen much focus is

lingual text similarity.

Similarity metrics would be useful is in machine translation. A good text similarity

metric could be used as a scoring function for a statistical machine translation

system, although Similarity finder in practice isn't designed for that sort of use.

Given a foreign language string, and multiple generated translations, the text

similarity metric could be used to prune non-similar translations, retaining similar

ones for scoring via a language model of the target language. The core hypothesis of

my similarity detection approach is that similarity between sentence-level units can

be computed on the basis of easily extracted low-level primitives, without the need to

explicitly model semantic sentence meaning. Extending this idea to similarity

computation between languages, I hypothesize that similarity can be modeled by

identifying simple lexical and syntactic primitives in the source and target languages,

and by using translation at the level of the primitives to generate matches for the

features used to compute the similarity score. This approach is attractive in that it

allows for easy integration of foreign languages for which not many resources are

available; if large parallel corpora are available, a statistical translation dictionary

can be learned which achieves moderate performance.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 22

The approach I have taken to similarity computation in Similarity finder is to:

� Identify and extract primitives basic units compared between sentences from

the text

� Translate primitives between languages

� Compute features over extracted primitives

� Merge feature similarity values between sentences into a single, final

similarity value for each sentence pair

Similarity finder identifies similar pieces of text by computing similarity over

multiple features. All features are computed over primitives, syntactic, linguistic, or

knowledge based information units extracted from the sentences. Examples of

primitives are all nouns In a sentence, all verbs, all person names, or other sorts of

information that can be identified automatically that might indicate similarity on

some axis that can be separated from other axes. Primitives are extracted by modules

that are loaded at runtime for each language, and features are defined over the

extracted primitives. Both primitives and features are explained in more detail in

Section 3.3.2 and Section 3.3.4.

Section 3.3 presents details about Similarity finder's architecture, and how the above

steps are carried out, while section 3.4 is an in-depth discussion about adding English

language support to Similarity finder and evaluation results. Support for other

languages is discussed in section 3.5.

3.2 Related work in sentence similarity based text summarization

The English version of Similarity finder is the main innocence on Similarity finder,

but is not included in this section as it is a monolingual system. Similarity finder

takes the approach to text similarity introduced by English Similarity finder and

modularizes the system to make it easier to add new features and primitives, as well

as support for translation mechanisms between languages to allow for lingual

similarity computation. This section focuses on other work in lingual text similarity.

3.2.1 Example based machine translation

Example based machine translation systems [6] became popular in the 1980's and

1990's, and introduced a new paradigm for machine translation: using similarity to

previous translations to generate a new translation. In example based machine

translation systems, an input source sentence is matched to other source sentences in

a translation database via a similarity metric. The translation database typically

contains short sentences or phrases in the source language, and aligned translations

into the target language made by a professional translator or automatically through

corpus alignment methods. The similarity metric typically involves part of speech

tagging and low-level parsing or thesauri and other knowledge bases to identify

possible synonyms or words substituting from a similar semantic or grammatical

category. Exact matches between the source sentence and translation database

improve the score, while matches on tokens with the same semantic or grammatical

M.Tech.(C.S.) Thesis by Shivam Maurya Page 23

category improve the score less so and a lack of match on a token decreases the

score. Usually multiple matches to phrases are used to cover the entire source

sentence to translate. Translation involves substituting the target language translation

for each example matched for the source sentence, replacing words in each example

that were not exact matches, and ordering and re-generating any connective text

from the examples to cover the entire sentence.

There are many differences between example based machine translation system and

Similarity finder. Similarity finder similarity metric is lingual; in example based

machine translation systems, a source language sentence to be translated is matched

to other source language sentences, while in Similarity finder similarity is computed

between all the input sentences, some of which are in similar languages. Also, the

examples in the translation database are often not full sentences as would be found in

the news domain, but shorter sentence fragments. Similarity finder computes

similarity between full sentences, and allows For a larger deviation in the structural

similarity between the sentences, compared to example based machine translation

which requires high syntactic similarity between the source and example for the

translation of the example to be applicable.

The most related aspect of cross-language information retrieval to similarity finder is

that of query translation and query {document similarity computation. In CLIR, short

queries are translated into a language, and a similarity measure is computed between

the query and documents. Similarity finder computes similarity between all

sentences, not just a single query. Some of the same problems appear in both

contexts, but since similarity finder deals with sentences, and not full documents, the

problem of over-generalization when translating a term is not as severe. Additional

terms added to a translated[5,3] query that have a different sense from the original

query term are problematic because in large collections, it is likely that some

document contains the spurious term. Similarity finder deals with shorter units of text

and a spurious term are not as likely to appear. Similarity finder also uses bilingual

lexicons for translation, and morphological analysis software or stemming to

normalize words, and proper name identification and translation is implemented

using BBN's identifiers. Similarity finder approach is more sophisticated; using

Jaccard-like similarity over multiple features combined using a log-linear regression

into a single similarity value, as compared to just doing a cosine vector-space

distance in the term space, which is a common information retrieval approach.

Similarity finder use of multiple features and ability to compute similarity for one-

grained units of text set it apart from CLIR systems.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 24

3.2.3 Statistical machine translation

Brown et al. [18] introduced a statistical machine translation system in the 1990's

that has spurred a huge amount of research into purely statistical based machine

translation. In this approach, language translation is viewed as the task of

constructing a language model that estimates the probability of a given sentence S in

the source language, and a translation model that estimates the probability of

producing a target sentence T given a source sentence S. Translation is then cast as

maximizing

The cross-language similarity portion of similarity finder would fit well into this sort

of framework for similarity identification, since it mirrors the translation task well.

Similarity finder does use results from statistical machine translation community by

taking advantage of models for learning probabilistic dictionaries. In implementing

the English portion of similarity finder, I use a dictionary learned from an IBM

model 3 style translation probability models, which helped improve results over

translation by dictionary lookup alone. A distortion model might also help improve

similarity finder results at finding sentences that are translations of each other,

however, since similarity finder is searching for similar sentences that might not be

translations of each other, a distortion model might impose too many restrictions,

giving similar, but structurally different sentences, low probabilities. Application of

an IBM-style statistical model to intra-language similarity computation would be

interesting as well, but faces the problem of training data. Given enough examples of

sentences that are similar to each other, I think a statistical model that encodes the

similarity of words such as shoot and attack would be very useful, although these

sorts of relationships are also available by using primitives informed by word Net or

other linguistic knowledge bases.

3.2.4 Sentence alignment cost functions

Parallel corpus sentence alignment is another area that implements a cross-lingual

similarity function. The earliest approach, Gale and Church's program for bilingual

sentence alignment [9], uses word length in characters as the main cost function

between languages and dynamic programming to find the best alignment over

sentences. Using even just a simple cost function as length resulted in surprisingly

good results between French and English. More recent approaches such as [24]

improve on the cost function using bilingual lexicons, or learning them on the way,

and make improvements in adding linguistically derived information, such as

statistical phrases or sub tree grammars.

Similarity finder does not perform the same task as sentence alignment because

sentences are not assumed to map to another sentence in the target language; the

approach of computing a cost for alignment and then maximizing the total cost to

M.Tech.(C.S.) Thesis by Shivam Maurya Page 25

match sentences to each other (or null) is not valid in this context. Similarity finder

does make use of similar ideas though, especially in employing bilingual lexicons to

anchor matches between the languages.

3.2.5 Lingual Phrase Translation

Malamud’s method for discovering non-compositional compounds in parallel text

[23] Takes a similar approach, but does not require a list of collocations in the source

language. His method compares translation models that contain potential non-

compositional compounds built up word-by-word from highly correlated terms in

parallel corpora to translation models that do not contain the potential non-

compositional compound, and chooses to include compounds that increase the

predictive power of the translation model. This method is only capable of finding

non-compositional compounds that are not translated word-for-word, and the

compounds it finds translate as a unit, but might not be considered collocations in the

source language.

3.3 Similarity finder Architecture

Similarity finder is designed to be modular system. Similarity finder identifies

similar pieces of text by computing similarity over multiple features. There are two

types of features, composite features, and unary features. All features are computed

over primitives, syntactic, linguistic, or knowledge-based information units extracted

from the sentences. Both composite and unary features are constructed over the

primitives. The primitives used and features computed can be set at run-time,

allowing for easy experimentation with different settings, and making it easy to add

new features and primitives. Support for new languages is added to the system by

developing modules conforming to interfaces for text pre-processing and primitive

extraction for the language, and using existing dictionary-based translation methods,

or adding other language-specific translation methods. As shown in

M.Tech.(C.S.) Thesis by Shivam Maurya Page 26

 Figure 3.1: similarity finder Architecture.

3.3.1 Pre-processing

The first module is a pre-processing module, which prepares the input articles for

processing. I have designed a language-independent API that abstracts the

generalized pre-processing steps for the similarity discovery task. The steps in the

pre-processing stage are to segment the text of the documents into units to compare

for similarity, and to create alternative representations of the text, such as part of

speech tagged versions, that will be used in later stages to extract primitives.

Similarity finder supports using different levels of granularity for similarity

computation by segmenting the text into units using a user-specified segmentation

class. I have focused on computing similarity at the sentence level, but similarity

finder is not limited to processing sentences. Sentences offer a unit that can stand on

their own, and while anaphoric reference can be a problem, the level of the sentence

has been a good unit to work with for many applications. To support different text

segmentation schemes, a user needs only to create a Java class that adheres to the

sentence segmentation interface, and since these classes are loaded at runtime,

M.Tech.(C.S.) Thesis by Shivam Maurya Page 27

changing the type of segmentation used is very easy. I have implemented English

sentence segmentation using simple regular-expressions based classes, and an

interface to the MXTerminator1 [6] sentence segmentation program for English. The

second part of the pre-processing stage is to create different representations of the

text that will be used to extract primitives. The representations of the text react some

form of mark-up or tagging that might be used in the primitive extraction phase to

identify and extract primitives from the text. As with the other stages, classes are

loaded at run-time to perform this task, making it easy to add new representations for

a language. I have implemented English part-of-speech tagging, English and

Japanese morphological processing, and English named entity recognition using

existing tools in the similarity finder framework via this interface.

3.3.2 Primitive Extraction

In order to define similarity between two units, we need to identify the atomic

elements used to compute similarity. These are called primitives. Primitives are

general classes (for example, all stemmed words, all nouns, all noun phrases), while

a particular instance of a primitive would be a specific word, or a specific noun

phrase. Similarity between two units is computed using features over these

primitives, which will be discussed shortly. The second stage identifies and extracts

primitives for each unit. Primitive extractors are defined on a per-language basis

using a plug-in architecture making it easy to add support for different languages by

simply creating primitive extractors for that language. The primitive extraction,

primitive linking, and similarity computation phases all interact with data structures

that track which units contain which primitives on a per-language basis. These data

structures allow us to select sets of text units that contain common primitives for

comparison, while avoiding comparisons between text units that do not contain any

primitives in common, and provide a central location at which to translate all of the

primitive types that are seen in English.

There are ten primitive extractors implemented for English: all tokens, stemmed

tokens, word Net classes, nouns, verbs, proper nouns, heads of noun phrases,

adjectives, cardinals, and named entities. Token primitive extractors have also been

implemented. The primitive extractor performs word segmentation using the main

segment. Perl dictionary-based Chinese word segmentation program from the LDC.

The Japanese primitive extractor first processes the text with Chosen [1], and then

extracts the morphologically-analyzed text.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 28

For example, for the sentence.

And the following named entity primitives are extracted:

Primitive extractors operate over the original text of the unit, or use one of the

representations created earlier, such as a named-entity of part-of-speech tagged

version of the text. As each primitive is extracted, they are recorded in the text units,

and entries are made in a per-language index (labeled Big Board in Figure 3.2)

tracking which text units contain each primitive.

Features built over the primitives are used to compute how similar sentences are. For

example, a pair of sentences will have five feature similarities computed that how

M.Tech.(C.S.) Thesis by Shivam Maurya Page 29

similar sentences are based on tokens, nouns, verbs, word Net, and named entity

features. When all primitives have been extracted, Similarity finder relates primitives

that mean the same thing across languages using a translation mechanism. Primitives

within a language already track the units that contain the same primitive, and by

using word Net primitives are identify.

3.3.3 Primitive Linking

Once all of the primitives have been extracted from the units, similarity finder

collects lists of which units contain the same primitives. The final phase before

features is computed over. The units are to determine which primitives from one

language are translations of primitives in another language. In my application, I am

concerned with finding translations from a non-English language into English, since

I am working under the assumption that I will always have some English language

input. Because of this, I focus on finding similarity from non-English to English text

units. Extending similarity finder to search for links between a language and another

non-English language would be quite easy as long as some translation facility existed

for the language pair of interest. The translation facility does not have to be on the

order of full machine translation; similarity finder has shown that translation using

bilingual lexicons or learned probabilistic dictionaries can results in high-precision

for cross lingual text similarity computation.

Similarity finder does not itself contain any mechanism for identifying and linking

words that are synonymous. Within a single language, the choice of primitives is

assumed to resolve problems of synonymy by extracting primitives that encapsulate

that relationship, such as the word Net. Words that are synonyms will be mapped

into the same word Net sunset, and thus match other word Net primitives for words

in the same sunset.

The primitive linking phase is not a full translation phase. Since the goal is to use the

translations to link to other potentially related primitives, I prefer to err on the side of

opportunistically linking two primitives even if there might only be a tenuous

relationship between them. Since there is at least one primitive for each token in a

sentence, there are often a large number of primitives to compare between two

sentences. Sentences that are similar usually have more than a single link between

translated primitives due to additional links from other related words in the sentence.

By making many links, even when the translation is tenuous, the additional matches

from relevant words will help to reinforce similar sentences. Since our input consists

of topically-clustered documents. Similarity finder supports some simple dictionary-

based translation methods for linking primitives across languages. Similarity finder

has support for three types of dictionary formats: a simple word to word format

called the IDP dictionary format3, the edict format4 for Asian languages, and a

simple probabilistic dictionary format for dictionaries learned from parallel corpora.

Extending the dictionary support for other languages is quite simple by adhering to

the generic dictionary interface.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 30

3.3.4 Similarity Computation

Similarity between two units is computed on multiple features defined over the

primitives identified for each unit. Before performing the actual comparison between

the units, the units which should be compared are identified. Similarity finder uses an

approach that avoids comparing units that will not be found to be similar. To collect

units to compare, a primitive is chosen from the primitive-tracking data structure

(Big Board for each language), and all units containing the primitive or a linked

primitive are compared against each other. An N * N array, where N is the number of

text units, tracks which units have been compared, ensuring that similarity is

computed only once for each pair of units. A new primitive is selected, and the

process is repeated until all primitives have been used for all languages. This

approach only compares units that have a chance to be similar, while avoiding

comparison between units that share no primitives in common. Units that have no

primitives in common cannot be found to be similar by the similarity equation

computed over the features, and will be skipped because they have no primitives in

common, leaving The similarity comparison between two units is computed over

multiple features defined on the primitives.

The most common feature is overlap between primitives of the same type. For

example, if similarity finder has been set to extract token, verb and word Net

primitives, three features that compare the overlap on each primitive could be set up.

In that case, similarity finder would set up an N * N * 3 similarity matrix that tracks

the similarity for each feature between pairs of Units. Each entry is computed as the

number of primitives that are shared in common between the two units, divided by

the total number of primitives in the two units, possibly normalized by the unit

lengths. Primitives are weighted by the strength of the links between them if they are

translations. Figure 3.4 shows how three primitives are linked between English

sentences.

The similarity of two units, U1 and U2 with primitives P1 and P2, with the strength

of a link between primitive P1a and P2b given as WP1a; P2b is defined as:

Similarity finder also supports composite features, which compute a function that is

either 0 or 1 depending on the state of two primitives between the units. A composite

feature requires two primitives, such as verb and word Net primitives, and returns 1

if the two sentences both contain instances of the two specified primitives that match

other criteria (the two must be within a certain distance of each other, and possibly

react the same ordering, e.g., Verb, word Net and Verb, word Net.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 31

F1: Sentence Position

We assume the first sentence of a paragraph is the most important. Therefore we rank

a sentence in the paragraph according to their position. E.g. if there are 5 sentences in

the paragraph then the 1st sentence have a score of 5/5, Then 2
nd

have score 4/5, 3rd

have 3/5 and so on.

F2: Positive keyword in the sentence

Positive keyword is the keyword frequently included in the summary. It can be

calculated as follows:

Tfi is the occurrence or frequency of it term in the sentence, which probably is a

keyword.

F3: Sentence Relative Length

This feature is useful to filter out short sentences such as datelines and author name

commonly found in news articles. The short sentences are not expected to belong in

the summary. We use length of the sentences, which is the ratio of the number of

word occurring in the sentence over number of word in the longest sentence in the

document.

F4: Sentence resemblance to title

It is the measure of vocabulary overlap between this sentence and the document title,

generally the first sentence in the document is probably the title of the document. It is

calculated as

M.Tech.(C.S.) Thesis by Shivam Maurya Page 32

F5: Sentence inclusion of name entity (Proper noun)

Usually the sentence that contains more proper nouns is an important one and it is

most probably included in the summary. Proper noun gives the literature of contents.

F6: Sentence inclusion of numerical data

Sentences that contain numerical data are more important than rest of sentences and

are probably included in the summary.

F: Term Weight

The frequency of term occurrence within a document has often been used for

calculating the importance of sentence. The score of sentence can be calculated as

the sum of the score of word in the sentence. The score or weight wi of ith term or

word can be calculated by traditional tf-idf.

F8: Sentence similarity with other sentence

This feature measures the similarity between sentence S and each other sentences. It

measures how much vocabulary overlap between this sentence and other sentences in

the document. It is computed by cosine similarity measure with resulting between 0

and 1. The score of this feature for a sentence S is obtained by computing the ratio of

M.Tech.(C.S.) Thesis by Shivam Maurya Page 33

similarity of sentence S with each other sentence over the maximum similarity

between two sentences.

F9: Bushy path of the Sentence or node Sentence centrality

It has an overlapping vocal bury with several sentences it is defined as the number of

links connected it to other sentences (node) on similarity graph. Highly busy node is

linked to the number of other nodes. The busy path is calculated as follow:

3.3.5 Merging Feature Similarity Values

The goal of similarity finder is to group textual units from multiple languages with

similar meaning together. To do this, similarity finder uses a clustering algorithm

over similarity values between the units. The clustering algorithm requires a single

similarity value, but after the similarity computation stage, similarity is expressed

over multiple features, so they must be merged into a single similarity value. This

section deals with obtaining a single similarity value between units from the feature

similarity values. Section 3.3.6 deals with clustering the units using the similarity

values.

The similarity computation process used in similarity finder creates a similarity

matrix between the units on several dimensions. For each of the primitives extracted

from the units, a feature comparator is used to compare the similarity of the two units

over that primitive. The similarity computation stage results in an N *N *F similarity

matrix, where N is the number of textual units, and F is the number of features that

were used during the run. Before clustering the units, the N *N * F feature similarity

matrix is converted into an N *N matrix such that each element contains a single

value expressing the total similarity between the two units.

 The log-linear regression model, weights must be learned for the linear combination

of the features. For the English version of similarity finder, a training set of similar

textual units has been developed by human judges who made a similarity decision

M.Tech.(C.S.) Thesis by Shivam Maurya Page 34

over pairs of textual units. The lingual version of similarity finder requires the same

sort of training data. Small Each of the annotators read all articles in the training

document sets, containing English articles, and listed sentences in and English that

expressed the same information. The amount of effort involved in this exercise was

great, and since it would be very difficult to obtain a similar amount of training data

used for English similarity finder, when training a model English similarity, I took a

different approach: I used a sentence aligned parallel corpus for training examples.

This alternative approach, which does not require manually annotated similarity

training data.

3.3.5.1 Challenges for Lingual Feature Merging

While the above approach is tenable in the monolingual case where training data is

available, there are additional problems in the lingual case. The features that are

available for two textual units from different languages are usually different. For

example, for English in similarity finder there are multiple primitives (part-of-speech

based, stemmed tokens, word net classes, etc.) while only the token primitive has

been implemented. When calculating the final similarity value between English and a

text unit, the only feature that can be used is similarity as determined by overlap on

tokens via dictionary lookup. As more primitives and more sophisticated primitive

linking techniques are added, the number of features compatible between units in

similar languages will change as well. Since similar languages will have different

sets of compatible features, it is important to easily be able to switch feature merging

models to suit the compatible primitives, and to be able to learn these models across

languages.

To determine weights for the different combinations of language pairs, I perform a

similar training step to learn the exponents for feature weighting as in the English

case. This requires training data for the regression step, which is even more difficult

to obtain than in the English monolingual case: the human judges have to be able to

read and make similarity judgments over texts in all of the languages being clustered.

Instead of tagging training data manually as was done for the English training data, I

have taken a different approach and used data from the Machine Translation

community. In Section 3.4.4 I detail the training data used for the English version of

similarity finder, which is from the Multiple Translation English corpus from the

LDC6. As with in the monolingual English case, the final similarity score is

computed using a feature merging model that merges the feature similarity scores

into a single similarity score. The training data for the feature merging model is

generated in the same way as with the English case: similarity finder is run over the

training data, creating feature similarity values for each training instance, using

primitive translation as explained above to link primitives across languages. The

sentences that are aligned in the parallel corpus or marked as similar in the case of

manually annotated similarity training data) are marked as similar, other sentences

are marked as not similar.

The similar sentences are transformed into a target value of 1 for the log-linear

regression model, and 0 for not similar sentences. The log-linear regression then

learns exponent values for the model to best approximate the target similarity value.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 35

The clustering stage is unaffected by the lingual data, since it relies only upon the

final similarity values.

3.3.6 Clustering

The process of clustering the textual units is a separate stage that uses the final

similarity values computed. The clustering component uses the optimization-based

method described in Hatzivassiloglou etal. 2001 [14]. The clustering method requires

the number of output clusters to be specified, which is estimated for each input

document set using the same estimation as the English version of similarity finder.

The estimation is based on the similarity values between the textual units. The

number of clusters c for a set of n textual units in m connected components is

determined by-

where L is the observed number of links between units based on their similarity

being above a threshold, and P is the maximum possible number of links. A non-

linear interpolating function is used to account for the fact that usually L is less than

or equal to P. See Section 2.2.2 for more details.

3.4.2.1 Word feature matching

The basic primitive translation used is dictionary lookup in the Buck Walter

morphological analyzer available from the LDC. A match is made between primitive

and an English primitive if there is a non-stop word English translation in the Buck

Walter lookup that matches the English primitive, with the strength of the match

determined by the total number of English translations for the English word. Since

each word may result in multiple analyses, and each analysis may contain multiple

English glosses, the weight given to each English translation may be very small. No

sense disambiguation is performed, so there may be spurious matches made. For an

illustration of the translation method.

3.4.2.2 Using a probabilistic dictionary

The second translation method I use for English is lookup in a probabilistic

translation dictionary. Similarity finder supports two translation dictionary formats, a

simple word-to-word format, and a probabilistic format (see Section3.3.3 for

supported dictionary formats.) The probabilistic format maps English tokens to

M.Tech.(C.S.) Thesis by Shivam Maurya Page 36

English tokens with probability for the likelihood of the translation. Describes the

process used to learn the probabilistic dictionary used in similarity finder English

word lookup. When using the probabilistic dictionary, primitive is looked up, and a

link is made between the primitives for each target English token that exists. The

strength of the link is assigned the probability of the translation from the dictionary.

This translation method addresses one of the problems with the Buck Walter

translation method; the probabilities in the dictionary assign links between likely

translation pairs, and discount less-likely, but valid, translations.

3.4.2.3 Named entity feature matching

Named entity features are extracted from the text using BBN's Identity Finder for

both English. A match is found between Identity Finder primitives using either

dictionary lookup via the Buck Walter dictionary, or passing the entire named entity

to a translation system.8 If using the machine translation system, the entire text of the

translated named entity must match, otherwise, if there is at least one non-stop word

overlap between the English and glosses for English word, a match is made. No

disambiguation is performed, nor is locality of the text taken into account.

3.4.3 Learning a probabilistic English dictionary

To improve word translation I learned a probabilistic dictionary English using the

GIZA software package [ON03] for statistical machine translation. I used the default

settings for a model 3 alignment with the entire text of the English Parallel News

Part 1 Corpus9 from the LDC. The corpus contains English news stories and their

English translations LDC collected by the Ummah Press Service from January 2001

to September 2004. It totals 8,439 story pairs, 68,685 sentence pairs, words and 2.5M

English words. LDC sentence-aligned the corpus, making it suitable to use for

learning a translation dictionary. I generated the appropriate input for GIZA, ran

GIZA, and used the resulting final word translation table to generate a dictionary that

lists all words that were seen at least four times. Both the probabilistic dictionary and

Buck Walter translation mechanisms have been used for various experiments

reported.

3.4.4 Feature Merging Model Training Data

Similarity finder uses a log-linear model to generate the single similarity value

between two sentences. In English case, a model must be learned that converts the

two feature overlap values into a single similarity value. To do this, I require

examples to use as training data for the regression analysis. Since using bilingual

English annotators to mark sentences for similarity in a training corpus would be

expensive and difficult to obtain, I used an existing corpus from the Machine

Translation community of aligned translated sentences. The motivation is that

sentences that are translations of each other are certainly similar to each other, and

what is learned from training over this data should generalize to sentence pairs that,

while not being exact translations of each other, are similar. The benefit of training

M.Tech.(C.S.) Thesis by Shivam Maurya Page 37

over data that is not the exact same as the target data that we plan to test with is that

this type of training data is much more readily available.

I used the Multiple Translation corpus from the LDC as my training corpus. For

each of the 141 English documents, I chose one of the manual English translations

(the English translations labeled ahd, as those translations were generally accepted to

be of the highest quality) and ran similarity finder over the pair of documents. This

resulted in with training values for each of the sentence pairs that I then could use in

training. Training data for the regression model was generated by marking each

aligned English sentence pair as similar, and all other sentence pairs as not similar.

The data was run though a general linearized model to retrieve exponents used to

merge the feature values.

Table 3.1 and Table 3.2 shows the results from training feature merging models for

both token and Identity Finder features, and just the token feature alone with

different translations mechanisms. The tokens are translated using either lookup

through the Buck Walter morphological analyzer, lookup in a learned probabilistic

dictionary, or both. When using both resources for translation, English primitives are

first looked up using the Buck Walter.

Table 3.1: Feature merging model training results using token and Identity Finder

features

With Buck Walter + Probabilistic, Probabilistic, and Buck Walter translation.

system, and a link between the primitive and the target English translation are made.

The English primitives are then looked up in the probabilistic dictionary, and

additional links from the probabilistic dictionary are added. For different thresholds,

the Precision and Recall training results for the similar class is given. During

training, a test sentence pair is assigned a similar value if the similarity of the pair is

M.Tech.(C.S.) Thesis by Shivam Maurya Page 38

above the threshold. The best results are obtained using both token and Identity

Finder features, using the combination of probabilistic and Buck Walter translation

When using both the Token and Identity Finder features, in all cases using

Probabilistic translation combined with Buck Walter translation resulted in improved

precision and recall at every threshold over using just Probabilistic translation alone.

The difference is statistically significant at the p = 0:05 value for both precision and

recall using the paired Wilcoxon signed rank test. Similarly, Probabilistic translation

alone outperforms using Buck Walter translation alone on the training data at every

threshold, and is statistically significant at p = 0:01 for both precision and recall.

Combining Buck Walter and probabilistic translation.

 Table 3.2: Feature merging model training results for token feature using Buck

Walter and Probabilistic, Probabilistic, and Buck Walter translation.

Improves both precision and recall for training. Note that the source data used to

learn the probabilities for the dictionary is different from the training data used here;

the dictionary used data from 2001-2004 from the Ummah Press Service, while this

training data is from 2001 from the AFP and Xinhua news services. The general

genre and time frames do overlap, which means the dictionary is probably a good

match for the data used. Using only the token feature, using both Probabilistic

translation with Buck Walter translation outperformed using just Probabilistic

translation alone for every threshold except for 0.6 in terms of precision, but always

outperformed Probabilistic translation alone in terms of recall.

Probabilistic translation alone always outperformed Buck Walter translation alone.

The differences in precision and recall are all statistically significantly greater at p =

0:05 using the paired Wilcoxon test. In either case, using both Probabilistic and Buck

Walter translation provides the best performance. For all but one threshold (0.8)

using the combination of the token and BBN Identity Finder features performs as

M.Tech.(C.S.) Thesis by Shivam Maurya Page 39

well or better than using tokens alone. The addition of the Identity Finder feature

statistically signify frequently improved precision and recall over the token feature

alone using probabilistic and Buck Walter translation according to the paired

Wilcoxon test (p = 0:0593 for precision, p = 0:0099 for recall.) Adding more

linguistically informed features has helped performance when looking at the training

data, and as shown in section 4.2, also improves results when evaluated against

unseen data.

3.4.5 Training Results

The learned model was added to similarity finder, was re-run over the training data.

Each sentence was compared to the most similar English sentence as predicted by

similarity finder89.00% of the sentences were correctly mapped back to their aligned

counterpart. The average similarity of the most similar English sentence was 35.98%,

but this rose to 3.51% when looking at only correctly mapped sentences (vs. 23.6%

for incorrectly mapped sentences.) Figure 3.5 shows three examples of similar

English sentences found by similarity finder. , machine translations of the sentences

are provided in the blue boxes as a convenience to the reader, however similarity

finder only uses the English sentences to perform the similarity computation.

3.5.1 Extracting article text from web pages

In order to work with similarity finder in similar languages, I needed to find a natural

source of English and non-English news documents to work with. One source for

such documents is the online news crawling and clustering component of Columbia

News Blaster. I investigated methods for crawling and extracting article text in

multiple languages, as well as clustering English and non-English text within the

News Blaster framework. The following section discusses a new system Dave Elson

and I developed for extracting the text of an article from crawled web pages that uses

machine learning to enable support for English languages. One of the problems with

using web news as a corpus is that we must be able to extract the \article text" from

web pages in multiple languages. The article text is the portion of a web page that

contains the actual news content of the page, as opposed to site navigation links, ads,

layout information, etc. For example, a recent web page from the New York Times

consisted of a total of 0,61 bytes, but the actual article text of the web page was only

6,88 bytes. The remaining 60k was extraneous formatting information, navigation

links, advertisements, and so on.

I solved this problem by incorporating a new article extraction module that uses

machine learning techniques to identify the article text. The new article extraction

module parses HTML into blocks of text based on HTML markup and computes a

set of features for each text block. 34 features are computed for each text block,

based on simple surface characteristics of the text. For example, I use features such

as the percentage of text that is punctuation, the number of HTML links in the block,

the percentage of question marks, the number of characters in the text block, and so

on. While the features are relatively language independent in that they can be

M.Tech.(C.S.) Thesis by Shivam Maurya Page 40

computed for any language, the values they take on for a particular language, or web

site, vary.

3.5.2 Using simple document translation for lingual clustering

Once a suitable set of articles can be extracted from the web into text, it is necessary

to cluster the articles into topics for use with similarity finder and lingual multi

document summarization. The document clustering system that used in Columbia

News- Blaster [10] has been trained on, and extensively tested with English. While it

can cluster documents in other languages, our goal is to generate clusters with

documents from English languages, so a baseline approach is to translate all non-

English documents into English, and then cluster the translated documents. I take this

approach, and further use different translation methods for clustering and

summarization.

Since many documents are clustered, I use simple and fast techniques for glossing

the input articles when possible. I have developed simple dictionary lookup glossing

systems. While word sense disambiguation is important, my first implementations of

glossing systems do not perform word sense disambiguation or other sophisticated

disambiguation techniques. Documents that are used in a cluster are later translated

with a higher-quality method (currently, an interface to SYSTRAN's system via

Altavista's babel) For languages where we do not have a simple translation

mechanism available, web interface to the SYSTRAN translation engine. The

translated documents are then clustered as in the monolingual English version of

NewsBlaster.

3.5. Lingual Clustering Evaluation

I supervised a Russian-bilingual project student, Larry Leftin, who applied my fast

glossing translation system to Russian documents. We have performed an evaluation

of the lingual clustering component using glossing techniques as discussed in Section

3.5.2 over Russian text by manually examining clusters from a small test data set.

The data set is a crawl over news from two Russian news sites

(http://www.izvestia.ru/, http://www.mn.ru/), and English news from CNN.com, for

a total of 880 articles. After translating the Russian documents with our glossing

system and clustering the English and translated Russian documents, 448 clusters are

produced. Of those, clusters contained documents in both English and Russian. A

hand-examination of the clusters showed that they were all high quality clusters i.e.,

the topics of the English documents were tightly related to the topics of the Russian

translated documents. We also compared to clustering runs using documents with

slightly different translation processes (various methods of trying to emphasize

proper nouns in the translated Russian and original English text) but these variations

on the translation did not perform as well as the original glossing scheme. We have

not approached the task of looking at recall of the clustering, since even with this

small data set, it would not be practical to examine the entire set by hand. The small

number of lingual clusters does not sound unreasonable, since even with English-

only runs of Columbia NewsBlaster, only a small number of clusters result from a

M.Tech.(C.S.) Thesis by Shivam Maurya Page 41

large data set (from out of 2,000 - 3,000 input documents, generally only 300 clusters

altering requirements.)

Automated lingual article extraction and lingual document clustering is now a

functional part of the lingual version of Columbia NewsBlaster. In the next section, I

will detail similarity finder performance over Japanese training data collected from

the web.

3.6 similarity finder Conclusion

In this chapter I presented similarity finder, a system for computing text similarity

between text units (sentences, in this case) in languages. Similarity finder has been

implemented to work with English. For English and, different translation

mechanisms, feature sets, and feature merging models were explored, with the best

performing combination yielding precision of 86% and recall of 50% at a threshold

of 0. over the training data. Continuing with the work first started in the English

version of similarity finder, computes overall similarity on the basis of multiple

feature values defined over linguistically motivated primitive types instead of just a

single function of shared terms. Similarity finder makes it easy to add new primitives

for different languages, and allows for run-time definition of the set of features to use

for similarity computation. The ease with which new primitives and features can be

added allows for easy experimentation with features for similarity across languages.

Existing natural language processing resources can easily be integrated into

similarity finder, as shown by the integration of the English version of BBN's

Identity Finder for a named entity primitive in similarity finder.

Similarity finder uses translation at the level of the primitives to for cross-lingual

similarity computation. Performing translation at this level means that a full machine

translation system for a language pair is not required. For languages that do not have

a large amount of available tools available, similarity finder can be used in

conjunction with a simple token based primitive extractor and a translation lexicon

learned from a parallel corpus and still generate high precision output. Similarity

finder is easily ported to other languages, and a strong implementation has been

developed for English. Similarity finder to find similar sentences in English text,

and compares to performance using similarity finder with machine translated text.

Presents two summarization systems that use text similarity in novel applications of

lingual multi-document summarization.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 42

 CHAPTER 4

SUMMARIZATION VIA SIMILARITY

With the large amount of text available on the web, summarization has become an

important tool for managing information overload. While multi-document

summarization of English text has become more common, less attention has been

paid to producing English summaries of foreign language text. Yet, use of foreign

language on the web is growing rapidly [10], and with growing globalization many

news events are covered by many countries. In the face of the language diversity

available on the web, it is more important to investigate techniques that can provide a

summary of documents that end-users are not able to read. As much of the news that

is internationally reported is also available in English, making use of the English

documents for summarization in a lingual environment has become possible.

I have implemented two summarization systems:

� A system that builds a summary of the foreign language text, and

replaces sentence in the summary with a similar sentence from the

English text when possible.

� a system that uses sentence similarity to cluster all sentences,

identifying sentence topics that only occur in one language or the

other, and those which are present in both document sources.

The first system uses similar English text to improve the readability and

comprehensibility of a summary primarily over the foreign language documents,

while the second system indicates similarities and differences in the content between

the foreign language and English text. The first system is tested using machine

translated text, and English similarity finder to compute similarity. The second

system is tested using machine translated text, and over translated text with similarity

computed by similarity finder. Section 5.3 focuses on using text similarity to replace

machine translated sentences with similar sentences from English text, while section

5.4 presents a system that uses sentence similarity to cluster sentences and present

the information that differs between the English and foreign language documents.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 43

4.1 Related work in sentence similar text document summarization

Previous work in lingual document summarization, such as the SUMMARIST

system [15] extracts sentences from documents in a variety of languages, and

translates the resulting summary. Chen and Lin [4] describe a system that combines

multiple monolingual news clustering components, a lingual news clustering

component, and news summarization component. Their system clusters news in each

language into topics, then the lingual clustering component relates the clusters that

are similar across languages. A summary is generated for each language based on

scores from counts of terms from both languages. The system has been implemented

for English, and an evaluation over six topics is presented. Our system differs by

explicitly generating a summary in English using selection criteria from the non-

English text.

Other work that use similarity-based approaches to summarization, such as the

MEAD document summarization system [29] are related in their use of similarity to

guide selection, but our work is original in using text originally from one language to

guide selection exclusively on English text. The General summarization system [3]

uses text similarity to identify \themes" in a document, and then builds a summary

sentence from a theme by combining information from the similar sentences. Our

application of text similarity is to improve grammaticality and comprehensibility by

selecting similar content from English text, not to use similarity to identify important

content, or merge information from similar sentences.

4.2 Summarizing Machine Translated text with Relevant English

Text

In this section I present a lingual document summarizer that takes as input a set of

multiple documents on a particular topic, some of which are English, and some of

which are machine translations of documents into English. The summarizer produces

an

Figure 3.2: A system suggested replacement sentence for a machine translated

English sentence

M.Tech.(C.S.) Thesis by Shivam Maurya Page 44

English summary of the foreign language documents. One of the problems with

extracting sentences from the machine translated text directly is that they can be

ungrammatical and difficult to understand. Moreover, removing context makes the

resulting summary hard to comprehend. Figure 3.2 shows an example of an English

sentence translated by IBM's statistical MT system from the DUC2004 corpus, and

the English sentence that our system suggests as a replacement. I introduce a new

method to summarize machine translated documents using text similarity to related

English documents. The summary is built by identifying the sentences to extract

from the translated text, and replacing the machine translated sentences from the

summary with similar sentences from the related English text when a good

replacement can be found. The idea is to match content in the non-English

documents with content in the English documents, improving the grammaticality and

comprehensibility of the text by using similar English sentences.

I present different models for summarization using replacement and show their

effectiveness in improving summarization quality. In addition to different metrics

and thresholds for similarity, I investigate the utility of syntactic sentence

simplification on the replacement English text, and sentence chunking on the

machine translated English text. I performed manual evaluation of whether

replacements of machine translated sentences by similar English sentences improve a

summary on a sentence-by-sentence basis, as well as an evaluation of a similarity-

based summarization system using the automatic ROUGE [19] summary evaluation

metric. I show that 68% of sentence replacements improve the resulting sum Mary,

and that our similarity-based system outperforms a state-of-the-art document

summarization system and first-sentence extraction baseline.

4.2.1 Summarization Approach

Our approach relies on first translating the input documents into English and then

using similarity at the sentence level to identify similar sentences from the English

documents. As long as the documents are on the same topic, this similarity based

approach to lingual summarization is applicable. This thesis does not address the

issue of obtaining on-topic document clusters; news clustering systems such as

Google, or News demonstrate that this is feasible. The system architecture is:

1.Syntactically simplify sentences from related English documents, and possible

chunk machine translated English sentences.

2. Produce a summary of the machine translated sentences using an existing sentence

Extraction summarization system.

3. Compute similarity between the summary sentences and sentences from similar

English documents.

4. Replace English sentences from summary with English sentences for those pairs

with similarity over an empirically determined threshold.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 45

Since the focus of this work is not extraction-based summarization, we used an

existing state-of-the-art document summarization system, DEMS [35], to select the

sentences for the similarity computation process.

4.2.1.1 Sentence Simplification

Since it is difficult to find sentences in the related English documents containing

exactly the same information as the translated sentences, I hypothesize that it may be

more effective to perform similarity computation at a clause or phrase level. I ran the

English text through sentence simplification software [37] to reduce the English

sentence length and complexity in the hope that each simplified sentence would

express a single concept. The sentence simplification software breaks a long sentence

into two separate sentences by removing embedded relative clauses from a sentence,

and making a new sentence of the removed embedded relative clause. This allows a

more grained matching between the English sentences, without including additional

information from long, complex sentences that is not expressed in the English

sentence.

For example, for the following English sentence-

1. Had decided Iraq last Saturday halt to deal with the United Nations Special

Commission responsible disarmament Iraqi weapons of mass destruction. One

similar English sentence found is:

2. Earlier, in Oman, Sultan Qaboos reportedly told Cohen that he opposed any

unilateral U.S. strike against Iraq, which ended its cooperation with U.N. inspectors

on Saturday.

That sentence simplifies to the following two sentences:

2a. Earlier, in Oman, Sultan Qaboos reportedly told Cohen that he opposed any

unilateral U.S. strike against Iraq.

2b. Iraq ended its cooperation with U.N. inspectors on Saturday.

Using sentence simplification to break down the text allows us to match sentence 2b,

without including 2a, which was not reported in the English sentence? I examined

using two types of sentence simplification, syntactic and syntactic with pro- noun

resolution, and compared them to not using any sort of simplification. To limit the

number of systems evaluated in the manual evaluation, I determined settings to use

based on results from automated summary evaluation. In all of our experiments,

syntactic simplification performed about 3% better on ROUGE scores than

simplification with pronoun resolution, or not performing any simplification.

Simplification with pronoun resolution did not always beat un simplified text,

possibly due to errors introduced by the pronoun resolution, which has a success rate

of approximately 0%. I present results of the system using only syntactic

simplification. Similarly, I performed experiments for splitting the machine

translated text. Investigated two methods for splitting English text: one tags the text

with TTT4 and splits on verb groups, copying the previous noun group and verb

group to the start of the next sentence. The other splits on verb groups and \and",

M.Tech.(C.S.) Thesis by Shivam Maurya Page 46

\nor", \but", \yet" and \,", without performing the copying. In both cases, sentences

with less than 3 tokens are altered from the output. The copying method was

approximately 3% better on the manual evaluation below, so I omit results from the

other chunking method.

4.2.1.2 Similarity Computation

Text similarity between the translated and relevant text is calculated using similarity

finder [14]. Similarity finder is a tool for clustering text based on similarity

computed over a variety of lexical and syntactic features. The features used in

similarity finder are the overlap of word stems, nouns, adjectives, verbs, word Net

[22] classes, noun phrase heads, and proper nouns. Each feature is computed as the

number of items in common between the two sentences normalized by the sentence

length. The final similarity value is assigned via a log-linear regression model that

combines each of the features using values learned from a corpus of news text

manually labeled for similarity. No modifications were made to similarity finder to

compensate for using machine translated text as input, although the machine

translated text is quite different from the news text used to train similarity finder.

4.2.1.3 System Implementation

Our summarization system can be run in multiple configurations.

1. Use DEMS to select English sentences, retain only sentences that have similar

English sentences, replacing them with the single most similar English sentence. If

the summary is too short (less than 600 bytes,) delete it, and build a new summary

using all English sentences, sorted by similarity to English sentences, and replacing

each one by the single most similar English sentence.

2. Use DEMS to select English sentences, replace only sentences above empirically

determined threshold of 0.6 passing a cosine alter with similar English sentences, and

retain non-replaced English sentences in the summary.

3. Use all English sentences, sort by decreasing similarity to English sentences, and

replace each one by all English sentences above an empirically determined threshold

of 0.6 that pass a cosine alter. Machine translated sentences are kept if they do not

pass the threshold.

Configuration 1 uses DEMS to select sentences, and maximizes the number of

replacements made by re-running without DEMS if not enough similar sentences are

found to make a large enough summary. Configuration 2 also uses DEMS to select

sentences, but retains any machine translated sentences for which no suitable

sentence replacements are found. Configuration 3 focuses on maximizing

replacements by not using DEMS for selection, and builds a summary by taking the

most similar English sentences, using only similarity to English sentences to guide

selection, removing any manually-constructed \intelligent" system from the selection

task. All summaries are limited to 665 bytes since that was the size threshold that

M.Tech.(C.S.) Thesis by Shivam Maurya Page 47

was used for the DUC evaluation. An evaluation of the different configurations of

the system using ROUGE scores is presented.

4.3.2 Evaluation

I performed evaluation at two levels: the sentence level to test the proposed sentence

replacements of English sentences from similar English sentences, and the summary

level to evaluate quality of the full summaries that include these sentence

replacements. At the summary level, I used the automated system, ROUGE, for

evaluation. It allowed us to make rough distinctions between different models for

constructing the full summary. However, this would not tell us whether a particular

English sentence was a good replacement for a translated one and thus, I used a more

time-consuming, manual evaluation to quantify how well replacement worked.

4.3.2.1 Summary level evaluation

I evaluated the similarity-based summarization system using ROUGE, 5 a system for

summary evaluation that compares system output to multiple reference summaries. I

include results from two baseline systems: a first-sentence system, and runs of the

DEMS system without replacement.

The first-sentence summarization baseline takes the first-sentence from each

document in the set until the maximum of 665 bytes is reached. If the first-sentence

was already included from each document in the set, the second sentence from each

document is included in the summary, and so on. Two baseline summaries were

generated; one for the relevant English documents only, and one for the IBM

translated documents alone. The IBM translation baselines give us an idea of scores

for summaries drawn from the same content as the reference summaries, while the

relevant English baselines tell us how well summaries generated without any

knowledge from the English text score. Our similarity-based system was run with

simplified English sentences and full machine translated English sentences.

4.3.2.2 Summary level evaluation results

Table 3.3 lists the results using the ROUGE-L evaluation metric along with the

results of the four baseline runs. The ROUGE-L score is a longest common substring

score from the ROUGE system, which rates summaries based on n-gram overlap

between the system summary and multiple reference summaries. Evaluations with

ROUGE in the past have demonstrated that the score often fails to show statistical

significance between scores for evaluated systems. In DUC04 on the lingual system

task, the 95% confidence interval

M.Tech.(C.S.) Thesis by Shivam Maurya Page 48

 Table 3.3: Summary evaluation results.

split the 11 participating systems into two main groups; the bottom group containing

three systems and the top group containing everyone else. One could argue for a third

group containing the top system only, which was statistically significantly better than

the bottom six systems when taking the 95% confidence interval into effect. It is not

a surprise, then, that the results for the three versions of our system and the baselines

also fall within the 95% confidence interval. As the only automated method for

summarization, ROUGE is often, nonetheless, used to roughly rank different

approaches. Even if the similarity-based systems do not beat the baselines by

statistically significant margins, replacing the machine translated text with English

text does improve the readability of the summary. The similarity-based

summarization system in configuration 1 performs better than all the baselines,

whether over the related English text, or the IBM machine translated text. By out-

performing the first sentence baseline and DEMS on the machine translated text, I

infer that the similarity system is able to choose sentences from the related English

text that are relevant to the content summarized by the humans who read the manual

translations of the English text. In contrast, simply running first sentence extraction

and DEMS on the related English text does not perform as well; using the machine

translated text to guide selection of related English sentences gives an improvement

in performance over the related English baselines. The similarity-based system even

outperforms DEMS when run over the manual translations.

Of the three system configurations, the first performs the best. In this evaluation, this

configuration builds a summary using all English sentences and replaces them with

the most similar English sentence because DEMS selection resulted in too few

sentences. Using DEMS for selection in configuration 2 resulted in summaries

containing mostly machine translated text, since few sentences pass the required

threshold level and alters, but did not perform as well as the DEMS baseline since

sentences were sorted by similarity, resulting in different sentences in the truncated

M.Tech.(C.S.) Thesis by Shivam Maurya Page 49

summary. Configuration 3 also contained some machine translated sentences, and

did not perform as well as configuration 1, which only contained English text.

In Section 5.3, I presented a summarization system that summarizes machine

translated text using the English sentences to guide selection of English sentences

from a set of related articles. Syntactic sentence simplification on the related English

text improves overall summarizer performance, and a hand evaluation of the

sentence replacements show that 68% of the replacements improve the summary.

The results from the ROUGE metric show that the similarity based summarization

approach outperform DEMS and the first-sentence extraction baseline. It is

interesting that a state-of-the-art summarization system run over the relevant English

articles performs worse than the similarity-based summarization systems run over the

same data. This clearly demonstrates that the similarity-based selection system

driven by the machine translations is able to select the good sentences from the

relevant text.

In the process of performing our manual evaluation, often there was different content

in the English texts, and finding similar content for some subset of the sentences was

just not possible. This leads us to believe that a more useful approach to

summarization for data of this kind is to separate out what is similar between the two

document sources, and what is unique to each document source. Thus, I expand on

the idea of summarizing two different sets of documents by looking at not just what

is similar between them, but also what is different. Instead of just using the similarity

values as is done here, I cluster the sentences, and identify sentence clusters that

contain information exclusive to the English documents, information exclusive to the

English documents, and information that is similar between the two. The clusters

with similar sentences can be summarized using the approach in this thesis. For the

other clusters, I am working on an approach to generate indicative summaries that

point out the differences. Given that summaries that point out both similarities and

differences are quite different from the model summaries currently used in DUC, I

also develop strategies to evaluate these summaries, presented in Section 5.4.2.1.

4.4 Summarization that indicates similarities and differences in

content

While Section 5.3 focused on using text similarity to find similar sentences and

replacing them when possible, in many cases the documents from the two languages

contain different information. The second model of summarization uses text

similarity and sentence clustering to indicate both similar content between the two

sources and content that differs between two sources of text in different sentence. In

this case, our system works with English text.

In this section I introduce a second summarization system, CAPS (Compare And

contrast Program for Summarization) that uses text similarity on the input text

documents to generate clusters of sentences across languages that are similar to each

M.Tech.(C.S.) Thesis by Shivam Maurya Page 50

other, and identifies the source language documents from which the clusters draw

their evidence. A summary produced by CAPS identifies facts that English and

English sources agree on as well as explicit differences between the sources. Its

three-part summary of an event identifies information reported in English sources

alone, information reported by sources only, and information that appeared in both

English and English sources. As with the work presented in Section 5.3, English text

is first syntactically simplified, so CAPS can identify similarities and differences

below the sentence level.

In addition to using similarity metrics to identify agreements and differences among

articles, it also uses similarity to improve the quality of the summary from mixed

sources over plain extraction systems by selecting English phrases to replace error

full English translations. In the following sections I first describe the CAPS

architecture, then present the similarity metrics that I use for clustering and for

selection of phrases for the summary. Finally, I present an evaluation of our method

which quantities both how well CAPS identifies content unique to or shared between

different sources, and how well CAPS summaries capture important information.

Our evaluation features the use of an automatic scoring mechanism that computes

agreement in content units between pyramid representations [27] of the articles,

separated by source. As before, I use English documents from the DUC 2004 lingual

corpus [28] for the experiments here.

4.4.1 System Architecture

The input to the CAPS Summarizer is two sets of documents on an event. The input

to CAPS can be:

� a set of un translated documents with a set of English documents, or

� A set of manual or machine translations of documents with a set of

English documents.

When using English documents CAPS uses similarity finder to compute text

similarity, or the English version of similarity finder when using manual or machine

translations of the documents to compute the text similarity measure. As with

replacement-based summarization, either syntactic sentence simplification software

can be used to simplify the English text, or the original un simplified English text can

be used. Figure 3.3 shows the CAPS system architecture, with 8 main phases: text

simplification, similarity computation, clustering, cluster pruning, cluster language

identification, cluster ranking, representative sentence selection, and summary

generation. CAPS determine similarities and differences across sources by

computing a similarity metric between each pair of simplified sentences. Clustering

by this metric allows the identification of all sentence fragments that say roughly the

same thing. As shown in Figure 3.3, CAPS first simplifies the input English

sentences. It does not simplify the translated sentences because these sentences are

often ungrammatical and it is difficult to break them into meaningful chunks. CAPS

M.Tech.(C.S.) Thesis by Shivam Maurya Page 51

then computes similarity between each pair of simplified sentences and cluster all

sentences based on the resulting values.

Figure 3.3: CAPS System Architecture

Next, sentence clusters are partitioned by source, resulting in multiple clusters of

similar sentences from English sources, multiple clusters of sentences from English

sources, and multiple clusters of sentences from English sources. Finally, I rank the

sentences in each source partition using a TF*IDF score [32]. The ranking

determines which clusters contribute to the summary (clusters below a threshold are

not included) as well as the ordering of sentences. For each cluster, we extract are

representative sentence (note that this may be only a portion of an input sentence) to

form the summary. In this section, I describe each of these stages in more detail.

4.4.1.1 Sentence Simplification to Improve Clustering

As with the summarization system presented in Section 3.3, it is possible to

performing syntactic sentence simplification on the input English text. I have

previously performed experiments using both perform syntactic simplification and

M.Tech.(C.S.) Thesis by Shivam Maurya Page 52

not using simplification on the input English text, and show the results in Section

5.3.2.1. I opt to use syntactic sentence simplification with this system as well because

it allows one to measure similarity at grain than would otherwise be possible. I use a

sentence simplification system developed at Cambridge University [37] for the task.

The generated summary often includes only a portion of the simplified sentence, thus

saving space and improving accuracy. I use syntactic sentence simplification only

instead of using syntactic simplification with pronoun resolution. The pronoun

resolution phase included in the software sometimes makes anaphoric reference

resolution errors, resulting in incorrect re-wordings of the text.

4.4.1.2 Text Similarity Computation

Text similarity between English sentences is computed using similarity finder, a

program I developed which uses simple feature identification and translation at word

and phrase levels to generate similarity scores between sentences across and within

languages. Section 3.4 details the English version of similarity finder used in this

work. Text similarity between manual and machine translated English documents

and English is computed with similarity finder, an English-specific program for text

similarity computation that similarity finder was modeled after. Similarity finder for

English is presented in Chapter 2. In addition, I present a third baseline approach

using the cosine distance for text similarity computation.

4.4.1.3 Sentence clustering and pruning

Sentence clustering uses the same clustering component described in Chapters 2 and

3. Each cluster represents a fact which can be added to the summary; each sentence

in the generated summary corresponds to a single cluster. Since every sentence must

be included in some cluster, individual clusters often contain some sentences that are

not highly similar to others in the cluster. To ensure that our clusters contain

sentences that are truly similar, I implemented a cluster pruning stage that removes

sentences that are not very similar to other sentences in the cluster. I implemented the

same cluster pruning algorithm described in [31]. This pruning step ensures that all

sentences in a sentence cluster are similar to every other sentence in the cluster with

a similarity above a given similarity threshold. I illustrate the procedure with the

following example. For the cluster with these initial sentences:

P13 Sana'a 12-29 (AFP) - A Yemeni security official reported that Yemeni security

forces killed three of the Western hostages who were held in Yemen, two Brits and

an American, and managed to free 13 others when they attacked the place where they

were detained. P36 London 12-29 (AFP) - British Foreign Secretary Robin Cook

announced this evening, Tuesday, that the four Western hostages who were killed

today in Yemen are three Brits and one Australian. P41 London 12-29 (AFP) -

British Prime Minister Tony Blair announced today, Tuesday, that he was "shocked

and hurried" about the killing of four Western hostages in Yemen, including at least

three Brits. P51 London 12-30 (AFP) - One of the surviving hostages in Yemen,

David Holmes, announced in a telephone call conducted with him from London by

Agence France Presse that the hostages who died Tuesday in Yemen at the hands of

M.Tech.(C.S.) Thesis by Shivam Maurya Page 53

their kidnappers were killed during the attack by policemen, and not before the attack

as Yemeni police asserted. P52 Holmes (64 years), who is still in Aden, regarded

"that all reports that said that the criminals attacked the hostages (before the raid by

security forces) do not agree with the developments of events. When the criminals

found themselves threatened and realized that they may be defeated, they wanted to

kill the hostages."P53 Aden's Security Chief, Brigadier General Mohammad Saleh

Tareeq, had announced today, Wednesday, in the presence of some survivors who

refused to speak to the press that "the hostage rescue operation started after the gang

began killing the hostages, whereas they first killed three of the British hostages,

which then forced the security forces to storm their location to prevent more

bloodshed, and was consequently able to free the rest of the hostages." P58 In

Yemen, three hostages were killed. P62 Authorities say it was the first time hostages

had been killed in Yemen.

Based on the similarity values between the sentences in the cluster, those sentences

that have values lower than the threshold are removed. In this example, sentences

P51, P52, and P62 need to be removed. The final cluster is then:

P13 Sana'a 12-29 (AFP) - A Yemeni security official reported that Yemeni security

forces killed three of the Western hostages who were held in Yemen, two Brits and

an American, and managed to free 13 others when they attacked the place where they

were detained. P36 London 12-29 (AFP) - British Foreign Secretary Robin Cook

announced this evening, Tuesday, that the four Western hostages who were killed

today in Yemen are three Brits and one Australian. P41 London 12-29 (AFP) -

British Prime Minister Tony Blair announced today, Tuesday, that he was "shocked

and hurried" about the killing of four Western hostages in Yemen, including at least

three Brits. P53 Aden's Security Chief, Brigadier General Mohammad SalehTareeq,

had announced today, Wednesday, in the presence of some survivors who refused to

speak to the press that "the hostage rescue operation started after the gang began

killing the hostages, whereas they first killed three of the British hostages, which

then forced the security forces to storm their location to prevent more bloodshed, and

was consequently able to free the rest of the hostages." P58 In Yemen, three hostages

were killed.

The resulting cluster contains sentences that are much more similar to each other,

which is important for my summarization strategy since I select a representative

sentence from each cluster that is included in the summary. I do not want to make

sentences that are not representative of the cluster available for inclusion in the

summary.

4.4.1.4 Identifying cluster similar sentence

The final summary that I generate is in three parts:

� sentences available only in the similar text documents

� sentences available only in the English documents

� sentences available in both the similar text and English documents

M.Tech.(C.S.) Thesis by Shivam Maurya Page 54

After producing the sentence clusters, I partition them according to the sentence of

the sentences in the cluster: English only. This ordering is important because it

allows us to identify similar concepts across languages, and then partition them into

concepts that are different: those that are unique to the documents, and the English

documents, and concepts that are supported by English documents.

Note that these clusters are not known before-hand and are data driven, coming from

the text similarity values directly.

4.4.1.5 Ranking clusters

Once the clusters are partitioned by language, CAPS must determine which clusters

are most important and should be included in the summary. Typically, there will be

many more clusters than cannot in a single summary; average input data set size is

263 words, with an average of 4050 words in clusters, and I am testing with 800

word summaries, 10% of the original text. In the default configuration, CAPS uses

TF*IDF to rank the clusters; those clusters that contain words that are most unique to

the current set of input documents are likely to present new, important information.

For each of the three types of sentence clusters, English, the clusters are ranked

according to a TF*IDF score [32].

The TF*IDF score for a cluster is the sum of all the term frequencies in the sentences

in the cluster multiplied by the inverse document frequency of the terms to discount

frequently occurring terms, normalized by the number of terms in the cluster. The

inverse document frequencies are computed from a large corpus of AP and Reuter’s

news. CAPS have two other measures for ranking clusters: the number of unique

sentences in each cluster, and the number of unique sentences in a cluster weighted

by the TF*IDF score of the cluster. Experimentation over a single test document set

showed that the TF*IDF score performed best of the three, and results from this

thesis use that cluster ranking method.

When using A text in the input and text similarity computation phases, the text is

translated into English after the clustering phase. TF*IDF counts are computed over

the machine translated text. This is done because the ranking of clusters has to be

done over, English, and mixed clusters, which presents a problem: how to rank the

mixed clusters? For only clusters, a TF*IDF approach using IDF values from a large

English corpus could be used, but it is unclear if direct application of TF*IDF to

clusters with both languages and different IDF values for each languages would be

applicable. As the English sentences need to be translated for presentation in an

English summary anyway, and many of the sentences have been dropped through the

clustering and pruning process, machine translation is performed at this step, and

clusters are ranked with the machine translated versions of the sentences.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 55

4.4.1.6 Sentence selection

The cluster ranking phase determines the order in which clusters should be included

in the summary. Each cluster contains several (possibly simplified) sentences, but

only one of these is selected to represent the cluster in the summary.

There are three methods implemented to select a specific sentence to represent the

cluster:

1. The sentence most similar to all other sentences based on the computed similarity

values.

2. A TF*IDF based ranking method that selects a sentence with the highest TF*IDF

score.

3. A method that constructs a \centroid" sentence in a vector space model, and selects

the most similar sentence to the centroid To compute a TF*IDF score for clusters

with text in multiple languages, one must have a (preferably large) corpus to derive

IDF values for terms in the respective languages. Experimentation over a test set

showed that the first method performed best, so that is the method used in these

experiments.

Only the set of unique sentences are evaluated for each cluster. In this sort of task,

many of the input documents repeat text verbatim, as the documents are based on the

same newswire (Associated Press, Reuters, etc.) report, or are updated versions of an

earlier report. In order to avoid giving undue weight to a sentence that is repeated

multiple times in a cluster, the unique sentences in each cluster are first identified.

Unique sentences are identified using a simple hash function, removing leading and

trailing white space.

Similarity based selection:

To select a sentence based on the text similarity values, first the set of unique

sentences is determined as described above. For each unique sentence in the cluster,

its average similarity to every other unique sentence in the cluster is computed. The

unique sentence with the highest average similarity is then chosen to represent the

cluster.

TF*IDF based selection:

Starting with the set of unique sentences, each sentence is scored using the same

TF*IDF measure used for cluster ranking (see Section 5.4.1.5.) The frequency of

each term in the sentence is computed, multiplied by the inverse document frequency

for the term, and the score for the sentence is normalized by sentence length. The

unique sentence with the highest TF*IDF score is selected to represent the cluster.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 56

Centroid sentence selection:

The centroid measure for sentence selection first builds a simple vector-space model

for all the unique sentences, and a model for the centroid sentence. The centroid

sentence model is built by adding in the terms from all of the unique sentences in the

cluster. The cosine distance between each unique sentence and the centroid sentence

is computed, and the closest unique sentence is chosen to represent the cluster.

4.4.1. Summary generation

 3.4 Summary generation

Once the clusters are ranked and a sentence has been selected to represent each

cluster, the main remaining issue is how many sentences to select for each partition

in English. There are two parameters that control summary generation: total

summary word limit, and the number of sentences for each of the three partitions.

The system takes sentences in proportions equal to the relative partition sizes. For

example, if CAPS generates similar clusters, 24 English clusters, , then the ratio of

sentences from each partition is 4 English. The smallest partition size is divided

through the 3 partitions to determine the ratio. The total word count is divided among

partitions using this ratio.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 57

There are some measures which quantify the quality of summaries produced. It is

classified into two types.

� Intrinsic evaluation is a method which measures the quality of the summary

as output.

� Extrinsic evaluation is a method which measures the quality of output

summary in the form of its assistance in another task.

Implementation

A network in general represents concepts as nodes and links between concepts as

relations with weights indicating strength of the relations. The hidden or latent

structure underlying raw data, a fully connected network, can be uncovered by

preserving only critical links. The aim of a scaling algorithm is to prune a dense

network in order to reveal the latent structure underlying the data which is not visible

in the raw data. Such scaling is obtained by generating an induced sub graph. There

are two link-reduction approaches: threshold-based and topology-based. In threshold-

based approach elimination of a link is solely decided depending upon whether its

weight exceeds some threshold. On the other hand, a topology-based approach

eliminates a link considering topological properties of the network. Therefore a

topology-based approach preserves intrinsic network properties reliably. We have

used a threshold based approach with a threshold of 0.04 to discard branches among

nodes that similarity less than 0.04.

Figure 3.5: Scaled network graph with threshold of 0.04.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 58

Feature Score and rank of the all sentences

All the sentences are ranked by calculating various feature score for all sentences and

according to the compression rate they selected for inclusion in summary in

descending order of their rank in the order of their appearance.

Table no 3.4 Feature Score and rank of the all sentences

4.4.2 Evaluation

The most common method to date for evaluating summaries is to compare

automatically generated summaries against model summaries written by humans for

the same input set Using different methods of comparison (e.g., [19], [28], [30]).

Since there is no Corpus of model summaries that contrast differences between

sources; I developed a new evaluation methodology that could answer two questions:

� Does the approach partition the information correctly? That is, are the facts

identified for inclusion in the similar partition actually unique to only the

documents? If our similarity matching is incorrect, it may miss a match of

facts across language sources.

� Does the 3-part summary contain important information that should be

included, regardless of source?

M.Tech.(C.S.) Thesis by Shivam Maurya Page 59

I use Summary Content Units (SCUs) [27] to characterize the content of the

documents and the Pyramid method to make comparisons. The evaluation

features four main parts: manual annotation of all input documents and the

model summaries used in DUC to identify the content units, automatic

construction of four pyramids of SCUs from the annotation (one for English,

and mixed language SCUs and one for the entire document set regardless of

language), comparison of the three partitions of system identified clusters

against the source specific pyramids to answer question 1 above, and

comparison of the facts in the 3-part summary against the full pyramid to

answer question 2.

4.4.2.1 SCU Annotation

In the summarization experiments, I needed to come up with an evaluation

methodology that can take into account summaries that indicate differences in

information content between documents from different sentence. To do this, I first

need to characterize the content of the documents in English, and determine what

information is contained in both document sets, and what is exclusive to one set or

the other. I have chosen to use Summary Content Units (SCUs) [27] to characterize

the content of the documents, and evaluate the summaries output by the system.

The goal of SCU annotation is to identify sub-sentential content units that exist in the

input documents. These SCUs are the facts that will serve as the basis for all

comparisons. The SCU annotation aims at highlighting information the documents

agree on. An SCU consists of a label and contributors. The label is a concise English

sentence that states the semantic meaning of the content unit. The contributors are

snippet(s) of text coming from the summaries that show the wording used in a

specific summary to express the label. It is possible for an SCU to have a single

contributor, in the case when only one of the analyzed summaries expresses the label

of the SCU.

4.4.2.2 Characterizing English content by SCUs

This section deals with how the content differs from the English documents in the

sets. Appendix A details the annotation process applied to the DUC sets. The and 10

English documents, as well as 4 human-written summaries for each set were marked

by annotators as described to arrive at one large content pyramid for all 24

\documents" in the set. The large content pyramid was then automatically broken

down into language-specific pyramids based on the language of the contributors in

each SCU. An SCU that contains only contributors from English documents goes

into the English pyramid, one that only has English contributors goes into the

English pyramid, and SCUs that contain contributors from English documents are

placed in the mixed pyramid.

Pyramid, while the Contributors column lists the total number of contributors for the

set. Many SCUs have multiple contributors, with some SCUs having more than 30

M.Tech.(C.S.) Thesis by Shivam Maurya Page 60

contributors for a single SCU. The sets vary in terms of distribution of SCUs

between the languages, but in general the English pyramid contains the most SCUs.

There are two sets for each of mixed that both contain the largest number of SCUs.

In six of the ten sets, the size of the mixed pyramid is greater than the size of the

English pyramid. The partitioning of the manually annotated pyramids show that the

majority of the time the English language documents more unique information than

the English documents, but there is still information that is only reported in the

documents and that has support from English documents.

4.4.2.3 Evaluating language partitions with SCUs

Once the SCU pyramids for a document set are created, they can be used to

characterize the content of the English documents. The SCU pyramids reveal the

information in each document set, and the weights of the SCUs indicate how

frequently a particular SCU was mentioned in the documents. In general, more

highly weighted SCUs indicate information that should be included in a summary.

This section described how I have used the three different language pyramids to

evaluate the CAPS summarizer output, both for how well it identified content

particular to one language , and how well it chooses important content to include in

the summary.

The following example shows how SCUs are weighted based on importance of a

concept, and how the SCUs differ by language. This example is from a set about the

explosion of a Pam-Am jet over Lockerbie, Scotland, the top three SCUs from the

SCU annotation broken down by similar sentence.

Evaluating English clusters is done in the same manner as clusters; I collect the

SCUs associated with each of the sentences in the cluster, and compute the SCU

score and percentages of SCUs found in the cluster compared against the English-

only SCU pyramid. Since the system can be run with syntactically simplified English

text, I cannot just determine the SCUs for a sentence by reading the annotation. To

determine the SCUs for the sentence, I first identify the longest match between the

sentence being evaluated and the originally marked documents, and then read the

SCUs for the matching portion. Since all of the sentences that are evaluated are either

complete sentences that have been annotated, or simplified portions of marked

sentences, this approach worked very well.

4.4.2.4 Importance evaluation

The overall summary content quality is evaluated using the Pyramid method for

summary evaluation; the full 3-part summary is scored by comparing its content to

the SCU pyramid constructed for all documents in the set as well as the four human

model summaries. This pyramid encodes the importance of content units in the entire

set; important SCUs will appear at the top of the pyramid and will be assigned a

weight that corresponds to the number of times it appears in the input documents and

model summaries. The pyramid score is computed by counting each SCU present in

the system generated summary, multiplied by the weight of that SCU in the gold

M.Tech.(C.S.) Thesis by Shivam Maurya Page 61

standard pyramid. The intuitive description of a pyramid score is that the summary

receives a score ranging 0 to 1, where the score is

The score for the summary is simply the sum of the weights of each SCU in the

summary. The max pyramid score for the summary is the maximum score one could

construct given the scoring pyramid and the number of SCUs in the summary. E.g.,

for a summary with SCUs, the max score is the sum of the weights of the biggest

SCUs.

I developed an automated technique to match summary sentences to the SCUs from

the pyramid. For English sentences that have been syntactically simplified, I use a

longest common substring matching algorithm to identify the original non-simplified

sentence in the annotated data. The SCUs annotated for the simplified section of the

sentence are then read from the annotation data. For sentences that have not been

simplified, the SCUs can be read directly from the annotation because they are

identical.

4.4.3 Results

Most of the summarization systems developed so far is for news articles. There are

two major reasons for this: news articles are readily available in electronic format

and also huge amount of news articles are produced every day. One interesting

aspect of news articles is that they are written in such a way that usually most

important parts are at the beginning of the text. So a very simple system that takes

the required amount of leading text produces acceptable summaries. But this makes it

very hard to develop methods that can produce better summaries.

4.4.3.1 Per-language Partition Evaluation

Table 5.3 shows the percentage of SCUs in each language pyramid that have a match

in the representative sentences for the partition. This evaluates how well the

similarity metric clusters text for each language, and is essentially the recall of SCUs

for each language partition. Table 5.4 lists the SCU Pyramid scores of the three

partitions using manually translated, machine translated, and UN translated English

documents. This evaluates the importance of the sentences included in the language

partition by the clustering algorithm and similarity metric. Note that these

evaluations are over the representative sentence of all clusters in each partition, and

not just the representative sentences in the summary.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 62

Extractive summary baseline

 As a baseline, I examined two approaches to summarizing the just the English

portion of the DUC 2004 English {English data, which do not take advantage of the

unique aspect of my system to summarize the similarities and differences between

the English documents. Using two document selection strategies, I used DEMS [35],

a state-of-the-art extractive summarization system to summarize English documents

from the data sets. The two document selection strategies are:

1. Select all English documents and summarize.

2. Compute the centroid document of all (translated) input English documents, and

select individual English documents with a cosine similarity of 0.0 or greater to the

English centroid. If fewer than two documents have a similarity of 0.0 or greater,

take the two most similar English documents.

Approach 1 is a baseline that examines how well summarizing all English documents

performs, while approach 2 restricts the English documents to those that are similar

to the English documents.

In both cases, the non-simplified versions of the English documents, the same

versions used to generate the gold-standard testing data, are summarized using

DEMS. The resulting summaries are evaluated in the same manner used for the

English summaries. The chosen representative sentence might not contain as many

SCUs as other sentences in the cluster.

4.4.3.2 Evaluating importance

To evaluate how well CAPS includes important information regardless of language, I

score the entire 3-part summary against the merged SCU Pyramid for each document

set, and compare to two baseline systems.

The baseline systems I compare to be:

1. Lead sentence extraction

2. Cosine system for similarity component for clustering component

The lead sentence extraction baseline extracts the first sentence from each document

until the summary length limit is reached, including the second, third, etc. sentences

if there is space. The first sentence baseline is very different from the CAPS system;

I was unable to use it in the language-partition evaluation because such a system is

not able to identify information that is only represented by one source or the other. It

is a common baseline used in document summarization though, and so I compare to

it in this part of the evaluation, which is a traditional summarization evaluation.

The cosine baseline uses a cosine metric for text similarity computation instead of

Similarity finder in the CAPS framework. Table 3.5 shows average performance of

CAPS and baseline systems over 10 different documents sets from the 2004 DUC

M.Tech.(C.S.) Thesis by Shivam Maurya Page 63

data. Since the pyramid sizes are different for different summaries, the average

scores are computed as micro averages as before; the average is the total weight of

all summary SCUs divided by the total of max SCU scores for each summary.

Table 3.5: Average SCU pyramid scores of CAPS and baseline systems of entire

summary.

Baseline by including a representative first sentence as well as other sentences from

sentence clusters that contain less frequently mentioned SCUs. When using machine

translations, scores are predictably lower than using manual translations; however,

the CAPS system still performs better than either of the two baselines. The similarity

component in CAPS performs much better than a less sophisticated text similarity

technique as shown by the cosine baseline run. Interestingly, the CAPS system run

over machine translated text even performs better than the first sentence extraction

baseline that uses manually translated sentences.

4.4.3.3 Example output

The following is an example of the summary for set d1018t, a set about the kidnap

and rescue of western hostages in Yemen. This example is taken from a run using

manually translated and syntactically simplified English, as those runs contain the

most understandable, making it easier to see the differences in content between the

English sources. The summary is an 805 word summary, 54% English, and 1%

mixed. The original documents total 4,350 words, so the summary is about 18% of

the original document size. On average, the 800 word summaries used for these sets

M.Tech.(C.S.) Thesis by Shivam Maurya Page 64

are 10% of the size of the original document set, but d1018t is smaller than the

average document set.

4.4.4 Conclusions

I have presented a system for generating English summaries of a set of documents on

the same event, where the documents are drawn from English sources. Unlike

previous summarization systems, CAPS explicitly identifies agreements and

differences between English sources. It uses sentence simplification and similarity

scores to identify when the same facts are presented in two different sentences, and

clustering to group together all sentences that report the same facts. I presented an

evaluation methodology to measure accuracy of CAPS partitioning of similar facts

by language and to score the importance of the 3-part summary content. The

evaluation shows that our similarity metric outperforms a baseline metric for

identifying clusters based on language, and performs almost as well using machine

translated text as manual translations for identifying important content exclusive to

English clusters. The CAPS summarization system outperforms cosine and first

sentence baselines using machine translated text, and almost performs as well as a

first sentence baseline using manually translated text.

Using Similarity finder, CAPS is able to use non-translated text as input, deferring

translation until after sentences have been clustered, reducing the number of

sentences that need to be translated. Using Similarity finder and translated input,

CAPS out-performs all other methods for identifying information that is supported

by English sources, a 0.826 micro-averaged SCU pyramid score, compared to the

next best 0.641 using manually translated documents.

Similarity finder can be quickly ported to work with other language pairs, using a

learned probabilistic dictionary and feature merging model from a parallel corpus.

This quick portability using only a parallel corpus allows for quickly building a

lingual summarization system based on CAPS with Similarity finder for a language

that does not have a large infrastructure of natural language processing tools built up.

While this version of CAPS does use machine translation to present the English

sentences to the user in English, presenting the original language sentences to a

bilingual analyst is possible, CAPS is able to reduce a large number of sentences

from multiple documents down to a much smaller number of sentences that would be

manageable for human translators to translate.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 65

CHAPTER 5

CONCLUSION

This thesis presents my work in lingual text similarity, and its application to

document text summarization. In this chapter, I will present my contributions to the

field, limitations with the work described here, and future work.

5.1 Contributions

This thesis presents many contributions both in the field of summarization, and

lingual text similarity computation. These contributions include:

� Development of flexible framework for experimenting with lingual text

similarity in Similarity finder.

� Linguistically motivated primitives that are computed on a per-language

basis.

� Support for computing similarity to languages with few natural language

processing resources available by using learned bilingual translation lexicons.

� A summarization approach implemented in the CAPS system that identifies

both Similarities and differences between documents in differ below the

sentence level.

� CAPS summarization system is applicable to any language pair for which

machine translation systems is available, or a lingual text similarity metric

can be computed.

� Information that is supported by both languages is made easier to understand

in the summary by selecting English sentences instead of machine translated

English sentences for the summary.

� CAPS approach is applicable even without machine translation systems

available to summarize English documents for lingual analysts.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 66

5.1.1 Linguistically motivated primitives

Chapter 2 introduces previous work on English text similarity that forms the basis of

my lingual text similarity research. This thesis presents Similarity finder, a system I

developed that takes the ideas presented in English Similarity finder, in particular the

idea of linguistically motivated features for comparing sentences on multiple axes.

Using multiple axes for similarity allows the system to target more specific types of

similarity than can be observed using just bag-of-words based approaches, and

allows the easy integration of knowledge sources such as word Net [22] and

grammatical information via part-of-speech based primitives.

5.1.2 A flexible framework for experimenting with lingual text

similarity

Chapter 3 describes Similarity finder, my implementation of a cross-lingual text

similarity computation system, and details my English implementation. Similarity

finder computes similarity over text at the level of primitives, easily identifiable

classes of text such as nouns, verbs, World Netsynsets, or named entities. The

primitives are linguistically motivated and Similarity finder makes it easy to add and

experiment with new primitives. Similarity across languages does not use full

machine translation over the text, but is instead computed based on translation at the

primitive level, where multiple translation approaches can be combined. In this work,

I present results using two features for English similarity: token level primitives, and

phrasal primitive’s uses named entities.

Using a probabilistic dictionary is shown to improve results over using dictionary

look up alone by increasing precision from 49.1% to 81.% when using both token

and named entity features. The hypothesis that adding the named entity feature

improves English could not be validated, as runs with the named entity feature did

not statistically significantly improve precision, although it also did not statistically

significantly reduce precision.

The best performing run of Similarity finder, using probabilistic and Buck Walter

translation with tokens and named entity features, performed nearly as well

considering precision only as the gold standard run of manually translated English

text using Similarity finder : 81.%, compared to the manual run of 84.6%. Using

Similarity finder has much better precision than machine translation with English

Similarity finder, at 66.5%, although English Similarity finder does have much better

recall.

Similarity finder is designed to make adding support for new languages easy. The

approach taken in Similarity finder is applicable to \resource poor languages by using

simple techniques for primitive identification, such as regular expression based

tokenizes to identify token primitives for the language, and translation using a

probabilistic bilingual translation lexicon learned from a parallel corpus. Similarity

finder is able to use multiple translation methods. The best performing versions of

Similarity finder use both a learned probabilistic Translation lexicon, and an existing

M.Tech.(C.S.) Thesis by Shivam Maurya Page 67

translation resource (glosses from the Buck Walter morphological analyzer [Buc02].)

For languages without many resources, if a parallel corpus is available using only the

learned probabilistic translation lexicon results in only a minor loss in precision

compared to using both translation resources (.% precision vs. 80.0% precision with

both.)

5.1.4 CAPS: Summarization that identifies similarities and

differences across similar sentence

In the context of multi-document summarization, the test-bed application for

sentences, precision is more important that recall. While missing some sentences is

acceptable since many sentences will by necessity be pruned from the summary, and

important content is assumed to be repeated, having poor clusters with non-relevant

sentences is not acceptable. Chapter 5 presents results from two summarization

systems. The first improves the understandability of a summary of machine

translated documents by conditionally replacing machine translated summary

sentences with highly similar English sentences when one exists. The second system,

CAPS, is a novel use of lingual text similarity to build a summary that indicates to a

user both what information is shared between two document sources and what

information is specific to only one source or the other.

CAPS are evaluated using English and documents, and improve understandability by

selecting English sentences for the summary for clusters with support from both

English documents. CAPS also breaks down information below the sentence level

by applying syntactic simplification to the English text. CAPS are evaluated using

both machine translated text with English sentences text using sentences. The

approach using sentences performs much better than using machine translation for

identifying content shared between the English texts. It does not, however, perform

as well at monolingual (English) content identification. CAPS receives an average

0.826 SCU pyramid score for mixed content with sentences, compared to 0.641 using

manually translated English text, or 0.565 for machine translated text.

The sentences approach works very well for the cross-language English content

identification task, validating one of the design goals of sentences. The

summarization approach used in CAPS is also applicable to any languages for which

a similarity metric can be computed between the English texts. Translation need only

be performed as a presentation step; the foreign language sentences can be presented

unmodified to bilingual users, taking advantage of a summarization strategy that

does not require any linguistic knowledge beyond what is needed for similarity

computation and cluster ranking. Even without translating the extracted sentences

into English, the foreign language text can still be summarized and compared to

English text, highlighting the similarities and differences between the two documents

sources, which is a major contribution of this thesis.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 68

5.2 Limitations

In the remainder of this chapter, I will present some limitations on the work in these

thesis problems or limitations that came to light during the development and

evaluation of the systems presented. Some of these limitations result from design

decisions, others from practical considerations due to difficulty of implementations,

lack of resources, etc., but that do not represent fundamental deficiencies in the

approach. Section 6.3 presents further work to be done in this area that could extend

the applicability and performance of the approach.

5.2.1 Experimentation with more English primitives

The language pair investigated in this work is English. One of the contributions of

the original English sentences work was the use of multiple linguistically-motivated

features used for similarity computation. The same approach is taken in sentences,

but I only investigated two primitives: tokens and named entities. I decided to not

perform morphological analysis at an early stage, but further work with English

similarity should investigate using morphological analysis to break the tokens down

into simple part of speech categories to use as additional primitives. Other more

complex primitives would be an interesting area for further research as well, such as

normalizing time expressions out to a format that would be comparable across

documents and language, or primitives that make use of more knowledge-heavy

linguistic resources, such as the corpora being produced by the Inter lingual

Annotation of Lingual Text Corpora project [25].

5.2.2 Better translation for named entities

I use IBM's statistical English machine translation system to translate named entities

when it is available; otherwise I try to match named entities based on translations of

their component words. A much preferable approach would be to use a system such

as Knight's transliteration system [4,7] for known named entities many named

entities are known not to be in any lexicons, as it is an open class of words that is

constantly being added to by the creation of new company names, or new celebrities

with previously translated names entering into the news. For translation of general

noun phrases, it would be interesting to try a system specific to noun phrase

translation, such as the one described in Philipp Kohn's thesis work [17]. The

primitive translation phase should also include more support for fuzzy matching and

partial matches. sentences is not trying to detect only exact translations, but similar

sentences which would benefit from a principled investigation of fuzzy matching for

primitives across similar sentences.

5.2.3 Language feature sets and merging models

As explained in Section 3.3.5 sentences uses a single feature merging model when

combining feature similarity values into a single similarity value. Sentences should

M.Tech.(C.S.) Thesis by Shivam Maurya Page 69

be extended to allow dynamically choosing the feature merging model to use based

on the language of the text units being compared. For two English units, it should use

a model trained specifically over English data, for units it should use a model trained

with English data, and for English units, it should use a model trained using English

translation data.

Currently, sentences can easily extract different sets of features for text units in

different languages, but to simplify programming in this thesis I use the same

features when computing similarity across similar and within similar sentences.

I have performed initial experiments combining both English training data and

English training data in a single feature merging model, but this approach needs

more work, since the additional English training data does not improve results for

English similarity, and hurts English similarity results. The next section introduces

these initial experiments.

5.2.3.1 Combining English training data

In Section 3.4.4 I train a model for English using the Multi-translation corpus. This

training data is used to train a model that is used to compute similarity over English

sentences, and English sentences. Intuitively, not having training data for the case

and English cases would have a negative impact on similarity computation for

English sentences. To improve the English results, I performed an experiment that

adds the English training data to the English training data. I would also like to add

similarity data, but I do not have a training set of similar sentences.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 70

Table 3.6: Feature merging model training results using token and Identity Finder

features With Buck Walter and probabilistic translation using English training data.

Training with the English data results in lower precision and recall than training over

just the English data. The English data includes many examples that are quite

difficult to classify automatically; training the English version of sentences also

results in lower scores than the English data, although due to additional features

English version of sentences performs better than this run using only includes token

and Identity Finder named entity features. For comparison, the model using only

English training data has 86% precision and 50% recall at a threshold of 0., whereas

the model with English training data has 6% precision and 13% recall. These results

indicate that a single set of features and a single feature merging model are not

appropriate in the lingual case. Future work should investigate adding feature sets on

a per-language basis (this is already supported in sentences) with feature merging

models that use the appropriate feature set merging model based on the languages of

the sentences.

5.3 Future Work

This section explores other areas to be explored within the similarity finder

framework for Lingual text similarity where I have not yet performed much work.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 71

5.3.1 Further integration of statistical machine translation methods

Similarity finder uses a learned probabilistic translation lexicon using an IBM model

3 implementation. Further investigation of the integration of other statistical machine

translation methods (distortion model, full decoder, etc.) would be useful.

A distortion model might help improve similarity finder s results at finding sentences

that are translations of each other. However, since similarity finder is searching for

similar sentences that might not be translations of each other conveying the exact

same information, a distortion model might impose too many restrictions, giving

similar, but structurally different sentences, low probabilities.

5.3.2 Noun Phrase Variant Identification

Noun phrase variant identification is an area where better translation methods would

help. Given a feature that extracts noun phrases in one language, to properly match to

a noun phrase in another language would require either a translation mechanism that

produces an N-best list with all likely variants of a noun phrase, or a noun phrase

variation system. This section describes some related work in noun phrase variant

recognition, and early experiments I performed with similarity finder noun phrase

variation in French and English. Initial results were not encouraging, and I believe a

more in-depth investigation is required to see improvement based on these

techniques.

5.3.2.1 Related Work on Noun Phrase Variation

One of the early areas of this thesis work was the investigation of using noun phrase

variation to recognize different forms of noun phrases across documents and across

languages. Noun phrase variation was used by Bourigault 1992 [1] for the

identification of terminological units. Maximal length noun phrases were identified

and parsed to identify likely terminological units due to the grammatical structure of

the noun phrases. The resulting terminological units were then passed to a human

expert for validation.

5.3.3 Sense disambiguation

When translating primitives, similarity finder does not perform any sense

disambiguation in order to determine which sense of a primitive is most appropriate

to choose for translation.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 72

REFERENCE

[1] Didier Bourifault. Surface grammatical analysis for the extraction of

terminological Noun phrases. In Proceedings of the 14th International Conference on

Computational Linguistics, pages 9{981, 1992.

[2] Christopher Buckley. Implementation of the smart information retrieval system.

Technical Report Technical Report 85-686, Cornell University, Ithaca, New York,

1985

[3] Regina Barzilay, Kathy McKeown, and Michael Elhadad. Information fusion in

the context of multi-document summarization. In Proceedings of the 3th

Association of Computational Linguistics, Maryland, June 1999.

[4] Hsin-Hsi Chen and Chuan-Jie Lin. A multilingual news summarizer. In

Proceedings of the 18th International Conference on Computational Linguistics,

pages 159{165, 2000.

[5] William W. Cohen. Learning trees and rules with set-valued features. In

AAAI/IAAI, Vol. 1, pages 09{16, 1996.

[6] Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach

To identifying sentence boundaries. In Proceedings of the Fifth Conference on

Applied Natural Language Processing, March 31{April 3 199.

[7] Nina Wacholder David Kirk Evans, Judith L. Klavans. Document processing

with linkit, April 2000.

[8] David A. Evans and Chengxiang Zhai. Noun-phrase analysis in unrestricted text

for information retrieval. In Proceedings of the ACL-96, 34th Annual Meeting

of the Association for Computational Linguistics, pages 1{24, Santa Cruz, US, 1996.

[9] W.B. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures

and Algorithms, pages 419{442. Prentice Hall, Englewood Clies, NJ,

1992.

[10] William A. Gale and Kenneth Ward Church. A program for aligning sentences

in bilingual corpora. In Meeting of the Association for Computational Linguistics,

pages 1{184, 1991.

[11] G. Grefenstette and J. Nioche. Estimation of English and non-English language

use on the WWW. In Proceedings of RIAO'2000, Content-Based Multimedia

Information Access, pages 23{246, Paris, 12{14 2000.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 73

[12] Vasileois Hatzivassiloglou, Luis Gravano, and Ankineedu Maganti. An

investigation of linguistic features and clustering algorithms for topical document

clustering. In Proceedings of the 23rd ACM SIGIR Conference on Research and

Development in Information Retrieval, 2000.

[13] Vasileios Hatzivassiloglou, Judith L. Klavans, and Eleazar Eskin. Detecting text

similarity over short passages: Exploring linguistic feature combinations via machine

learning. In Proceedings of the 1999 Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora, pages 203{212,

College Park, Maryland, June 1999.

[14] V. Hatzivassiloglou, J. L. Klavans, M. Holcombe, R. Barzilay, M.Y. Kan, and

K.R. McKeown. Similarity finder: A flexible clustering tool for summarization. In

NAACL'01 Automatic Summarization Workshop, 2001.

[15] E.H. Hovy and Chin-Yew Lin. Automated text summarization in summarise. In

I. Mani and M. Maybury, editors, Advances in Automated Text Summarization,

chapter 8. MIT Press, 1999.

[16] Min-Yen Kan and Judith L. Klavans. Using librarian techniques in automatic

text summarization for information retrieval. In Proceedings of the Joint Conference

on Digital Libraries, pages 36{45, Portland, Oregon, USA, July 2002.

[17] Philipp Kohn. Noun Phrase Translation. PhD thesis, University of Southern

California, 2003.

[18] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An

Introduction to Cluster Analysis. Wiley, New York, 1990.

[19] Chin-Yew Lin and E.H. Hovy. Automatic evaluation of summaries using co-

occurrence statistics. In Proceedings of 2003 Language Technology Conference

(HLT-NAACL 2003), Edmonton, Canada, May 2003.

[20] H.P. Luhn. The automatic creation of literature abstracts. IBM Journal of

research and development, 2(2), 1958.

[21] Daniel Marcu. From discourse structures to text summaries. In I. Mani and

M. Maybury, editors, Proceedings of the ACL/EACL'9 Workshop on Intelligent

Scalable Text Summarization, pages 82{88, Madrid, Spain, July 1999.

[22] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and

Katherine J. Miller. Introduction to word net: an on-line lexical database.

International Journal of Lexicography, 4(3):235{244, 1990.

[23] I. Dan Melamed. Automatic discovery of non-compositional compounds in

parallel data. In Claire Cardie and Ralph Weischedel, editors, Proceedings of the

M.Tech.(C.S.) Thesis by Shivam Maurya Page 74

Second Conference on Empirical Methods in Natural Language Processing, pages

9{108. Association for Computational Linguistics, Somerset, New Jersey, 199.

[24] I. Dan Melamed. A portable algorithm for mapping bitext correspondence. In

Philip R. Cohen and Wolfgang Wahlster, editors, Proceedings of the Thirty-Fifth

Annual Meeting of the Association for Computational Linguistics and Eighth

Conference of the European Chapter of the Association for Computational

Linguistics, pages 305{312, Somerset, New Jersey, 199. Association for

Computational Linguistics.

[25] Teruko Mitamura, Keith Miller, Bonnie Dorr, David Farwell, Nizar Habash,

Stephen Helmreich, Eduard Hovy, Lori Levin, Owen Rambow, Florence Reeder, and

Advaith Siddharthan. Semantic annotation for interlinguas representation of

multilingual texts. In Language Resources and Evaluation Conference Work- shop:

Beyond Named Entity Recognition - Semantic Labelling for NLP Tasks, Lisbon,

Portugal, May 2004.

[26] Peter McCullagh and John A. Nelder. Generalized Linear Models. Chapman and

Hall, London, second edition, 1989.

[27] Ani Nenkova and Rebecca Passonneau. Evaluating content selection in

summarization: the pyramid method. In Proceedings of the Human Language

Technology / North American chapter of the Association for Computational

Linguistics conference, May 2004.

 [28] Paul Over and J. Yen. An introduction to duc 2003 intrinsic evaluation of

generic news text summarization systems. In Proceedings of the Document

Understanding Conference, 2004. National Institute of Standards and Technology.

 [29] Dragomir R. Radev, Hongyan Jing, and Malgorzata Budzikowska. Centroid

based summarization of multiple documents: sentence extraction, utility-based

evaluation and user studies. In Proceedings of ANLP/NAACL 2000 Workshop,

pages 21{29, April 2000.

[30] D Radev, S. Teufel, H. Saggion, W. Lam, J. Blitzer, H. Qi, A. Elebi, D. Liu, and

E. Drabek. Evaluation challenges in large-scale document summarization.

In Proceedings of the 41st Annual Meeting of the Association for Computational

Linguistics, Sapporo, Japan, May 2003.

 [31] Advaith Siddharthan, Ani Nenkova, and McKeown Kathleen. Syntactic

simplification for improving content selection in multi-document summarization. In

Proceedings of the 20th International Conference on Computational Linguistics

(COLING 2004), 2004.

[32] G Salton. Automatic Information Organization and Retrieval. McGraw-Hill,

New York, 1968.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 75

[33] Gerald Salton. The SMART retrieval system - Experiments in automatic

document processing. Prentice-Hall, Englewood Clies, New Jersey, 191.

[34] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic

text retrieval. Information Processing and Management, 24(5):513{523, 1988.

[35] Barry Schulman, Ani Nenkova, and Kathleen McKeown. Experiments in multi

document summarization. In Proceedings of the Human Language Technology

Conference, March 2002.

[36] E. M. Voorhees. The Effectiveness and Efficiency of Agglomerative

Hierarchical Clustering in Document Retrieval. PhD thesis, Cornell University, 1986.

[37] Advaith Siddharthan. Resolving attachment and clause boundary ambiguities for

simplifying relative clause constructs. In Proceedings of the Student Work- shop,

40th Meeting of the Association for Computational Linguistics (ACL'02), pages

60{65, Philadelphia, USA, 2002.

[38] Nina Wacholder, David Kirk Evans, and Judith L. Klavans. Automatic

identification and organization of index terms for interactive browsing. In

Proceedings of The First ACM+IEEE Joint Conference on Digital Libraries, pages

126{134, Roanoke, VA, 2001.

[39] Bonnie Glover Stalls and Kevin Knight. Translating names and technical terms

in text. In Proceedings of the 1998 COLING-ACL, Montreal, Canada,

1998.

[40] David Yarowsky. One sense per collocation. In Proceedings of the ARPA

Human Language Technology Workshop, pages 266{21, Princeton, NJ, 1993.

M.Tech.(C.S.) Thesis by Shivam Maurya Page 76

List of Publication

1. Shivam Maurya, Mohd. Saif Wajid, Ramesh Vaishya, Paper title “Sentence

Similarity Based Text Summarization Using Clusters” . International Journal

of Scientific and Engineering Research (IJSER) Volume 4, Issue 5(May

2013).

M.Tech.(C.S.) Thesis by Shivam Maurya Page 77

CURRICULUM VITAE

Career Objective

Utilize and enhance my skills by working in professional environment.

Knowledge Preview:

Operating Systems : Windows Family

Programming Languages : C, JAVA

Database : Oracle 10g, MySQL

Web Skills : HTML, DHTML

Office Suite : Microsoft Office (Word/Excel/PowerPoint)

Educational Qualification

Year Degree/Certificate Institute/school %

2011-13

M.Tech

 (Computer Science)

 Pursuing

Babu Banarasi Das University,

Lucknow

71.72

Upto III

Semester

2011

B.Tech

(Computer Science)

Bhagwant Institute of

Technology, Muzaffarnagar,

UPTU

67.40

2006 Class XII A.D.S.V.M.,Sitapur 77.00

2004 Class X A.D.S.V.M.,Sitapur 75.33

Personal Information

Date of Birth June /12/ 1990

Sex /Nationality Male / Indian

Languages known English & Hindi

Permanent Address 967-A Thomson Ganj Sitapur , U.P. – 261001

Mobile No. +917376878629

E-mail reverentshivam@gmail.com

