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ABSTRACT 
 

 

 

Early work in the computational treatment of natural language focused on 

summarization, and machine translation. In my research I have concentrated on the area 

of summarization of documents in similar sentence summarization using clusters. This 

thesis presents my work on text similarity. This work enables the documentation of short 

units of text (usually sentences) that contain similar information even though they are 

written in similar sentence. I present my work on Similarity finder, a framework for text 

similarity computation that makes it easy to experiment with considerations for 

similarity computation and add support for similar sentence.  

 

 

                         A detailed examination and evaluation of the system is performed using 

English data. I also apply the concept of sentence text similarity to summarization in two 

similar sentence systems. The first improves readability of English summaries of text by 

replacing machine translated sentences with highly similar English sentences when 

possible. The second is a novel summarization system that supports comparative 

analysis of documents. Sentence similarity clusters sentences to present information that 

is supported by both similar sentence summarization using clusters. Second, the system 

provides an analysis of how English documents similar by presenting information that is 

supported exclusively by documents in English language. This novel form of 

summarization is a first step at analyzing the similar in perspectives from news reported 

in English. 

 

 

 

Sentences are then selected for inclusion in the summary depending upon their relative 

importance in the conceptual network. The sentences (nodes in graph) are then selected 

for inclusion in final summary based on relative importance of sentence in the graph and 

weighted sum of attached feature score. The user can find the document from their 

internet and analyze all to sort out the relevant information. Analyzing the text by 

reading all textual data is infeasible. So the technology of automatic document 

summarizer may provide a solution to information overload problems. We propose an 

extractive text summarization system. I proposed    my work on sentence similarity                  

based computation that helps to experiment for similar text computation. Extractive 

summarization text system choosing a subset of similar   group from   the text. Proposal 

work i used the part of speech, proper noun, verb, pronouns such as he, she,   and they 
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etc.   With the help of part of speech we find important    sentence using statistical 

method like   proper noun     and sentence    similarity system .It based on internet 

information that that contain picky sentence. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 
 

There is a lot of text in the world. According to Global Reach's 2004 estimate, there 

are295.4 million English-speaking people with access to the internet, and 544.5 

million non- English speaking people with access to the internet.1 The Internet 

Archive archives sites on the web, and has reached the size of approximately 1 

petabyte of data and is currently growing at a rate of 20 terabytes per month.2. With 

such a large amount of text, English and non-English alike, it is difficult to alter and 

manage the information that people need. Information retrieval engines help people 

and access the information that they desire, but what should one do when there is too 

much information to readily handle? 

Summarization is one important approach to managing the large amount of text that 

people must read. Summarization can reduce the amount of text people have to read 

to let them decide if a document is relevant to their information need. Since the 

inception of using computers to process written text, one of the first tasks undertaken 

was that of summarizing text by shortening a long document to present the 

document's content brief while preserving the underlying meaning [20]. Edmundson 

[1,3] proposed a method for weighting sentences using the keyword weighting 

proposed by Luhn, and added weights based on a list of cue-phrases indicating good 

and bad sentences, the words from titles and sub-titles, and the location of sentences.  

In the mid-nineties statistical approaches to identifying sentences based on features, 

such as those used by Edmundson, began to appear, as well as well as linguistics-

based approaches using discourse structure or more in-depth parsing of the text 

While the field of single document summarization has advanced considerably, early 

efforts focused mainly on monolingual text processing - English speaking people 

summarized English documents, Russian speaking people summarized Russian 

documents, Japanese speaking people summarized Japanese  documents, and so on 

As progress was made in single document summarization, researchers began to study 

multi-document summarization. Given five or ten documents on the same event (e.g., 

multiple documents reporting on developments in  
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The same court case), the goal is to produce a short summary that gives an overview 

of all the documents. One approach to document summarization that has proven 

effective and gained popularity is similarity-based summarization. 

The principle behind similarity-based summarization is that important information is 

repeated in different reports on the same event. Reporters for the New York Times 

and Los Angeles Times are going to both emphasize the same important facts in 

independently written articles on the same event. In a report about a specific trial, for 

instance, both reporters will state who the defendant and prosecutors are in the trial, 

and what charge the defendant is accused of. Identifying this repeated, important 

information is the approach taken in similarity based summarization systems. A 

similarity based summarization system identifies when sentences (or paragraphs, or 

clauses) state the same information. Sentences that are repeated many times across 

many documents are assumed to be more important than sentences that are not 

repeated, and a summary can be built by including information that has been 

repeated often. While most summarization systems are extractive, i.e., they take one 

of the sentences from the input documents verbatim and include it in a summary, 

some state-of-the-art summarization systems analyze the similar sentences and re-

formulate a new sentence including only the specific similar information. 

 

This thesis brings a similarity-based mostly extractive approach to multiple 

documents written in similar sentence. I present similarity finder, a framework I 

developed for identifying similar sentences within and between texts in multiple 

sentences. I have performed an evaluation of the system using English. I show the 

usefulness of my approach to similar text similarity for summarization tasks by 

presenting and evaluating two similar summarization systems. This thesis presents 

Similarity Finder, the system I developed as a framework for similar text similarity 

computation, examines the value of translation at similar levels and similar 

primitives for lingual similarity computation, and shows the implementation of a new 

summarization approach for similar document collections that shows both 

similarities and similarities between the documents across similar sentences. 

 

 

1.1 Goals 
 

There are two main goals for this thesis: to introduce my work in lingual text 

similarity, and to show that the system I built for the task can be used as the basis of 

similar document summarization system. Similarity finder, a system I developed for 

similar text similarity, is described and evaluated in a sentence and clustering-level 

evaluations of English text. Another contribution of the thesis is an approach to 
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similar document summarization that shows similarities in documents, as well as 

similar between them which use Similarity finder I first introduce related work that 

has been done on English text similarity in the Similarity finder system that forms 

the basis of my work on a similar version of Similarity finder called Similarity 

finder. Similarity finder was developed at Columbia University under the supervision 

of Judith Klavans and Kathy McKeown, and I have also worked on Similarity finder 

improvements and maintenance. I use this past work on Similarity finder to motivate 

that the approach Similarity finder takes is best suited for text similarity computation 

between small units of text (sentences or paragraphs) compared to the alternative of 

bag-of-words approaches used in information retrieval or document clustering. 

 

In the Similarity finder approach, similar primitives, such as words that are nouns or 

words that are verbs are identified, and similarity is computed over all of these 

features. For to sentences, Similarity finder will compute how similar those sentences 

are based on each feature, and it combines all the similarities into a single similarity 

value representing the overall similarity of the two sentences. For example, in the 

following two sample sentences. 

 

 
 

The noun primitives from Sentence 1 are (student, program) and from Sentence 2 are 

(athlete, race). The verb primitive in both sentences is (ran). Two features, verb 

similarity and noun similarity, are computed over the two primitive types, and while 

similarity is high over the verb feature they both share the same and only verb it is 

low over the noun feature. None of the nouns are the same. 

 

My work on Similarity finder extends the approach taken in Similarity finder to 

enable text similarity computation. Similarity finder identifies primitives in text in 

similar text, and makes it easy to add support for new primitive types. Features are 

easy to define over different primitive types, allowing for experimentation in both 

primitive types, and features computed over the primitives. Similarity finder 

introduces a translation stage that maps primitives from one language to another to 

enable matching primitives across English texts without using full machine 

translation on the non-English documents. Similarity finder can identify similar text 

across languages using only simple techniques for primitive translation. Similarity 

finder is designed to make it straightforward to add support for new languages, and it 

has been tested with minimal modifications over text from. This thesis will show that 

Similarity finder, using simple techniques that can be quickly applied to other 

language, performs with high precision at identifying similar sentences across 

language. 

 

 

The second main goal of this thesis is to present two summarization systems that 

have been built on top of the text similarity computation technology in Similarity 
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finder. The systems validate that Similarity finder is a useful similar text similarity 

computation engine. The first system takes a novel approach to improving the 

readability of English summaries of machine translated English data. It produces a 

summary of machine translated English text, and uses Similarity finder to identify 

English sentences that are similar to the machine translated summary sentences, 

replacing them if the two are similar enough. 

 

 

 

Research questions that this thesis answers include 
 

� Can a system automatically identify similar sentences across similar 

sentence? 

� If so, at what levels should translation be used? At the word level? At 

the level of Noun phrases? Can translation at lower levels compete 

with full machine translation? At the sentence level?  

� Can a system that identifies similar sentences across text be used for 

similar   sentence summarization? 

� Can sentence similarity be applied to improve summaries of machine 

translated text? Will cross-similar sentence similarity allow for the 

creation of summarization systems that present similar in perspective 

across languages by summarizing similarities and similar across the 

input documents? 

 

Approaches to text similarity 
 

English version of Similarity finder, a program for computing the similarity of 

English sentences and clustering them. Similarity finder was designed by other 

people at the Columbia University Natural Language Processing group, most notably 

Judith Klavans, Vasileios Hatzivassiloglou, and Melissa Holcombe. Similarity finder 

introduced the idea of using shallow linguistic features computed over the input text 

and a statistical model to combine those features into a similarity value between the 

sentences. Similarity finder also uses a clustering approach tuned to the task of 

clustering similar sentences. The shallow linguistic features encode information that 

can be derived by part-of-speech tagging or word lookup in lexical taxonomies such 

as word Net [22].  

In my thesis I compared a comparison of the Similarity finder approach to text 

similarity and other text similarity measures as used in information retrieval, 

document clustering, or other natural language processing tasks. I have extended the 

approach exemplified by Similarity finder to similar sentence in Similarity finder, a 

similar re-implementation of Similarity finder. Similarity finder is described. 

Similarity finder is designed to allow for easy addition of new primitives and features 

for comparing text, and I present an in-depth description of the English support in 

Similarity finder. Chapter 4 presents an evaluation of how well Similarity finder is 

able to identify English sentences that are similar to other sentences. The usefulness 
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of Similarity finder as a cross-lingual text similarity computation system is verified 

by using it as the basis for two summarization systems. 

 

Literature Survey 

H.P Luhn is the father of information retrieval. In his pioneering work used simple 

statistical technique to develop an extractive text summarization system. Luhn used 

frequency of word distributions to identify important concepts, i.e. frequent words, in 

the text. As there could be uninformative words which are highly frequent 

(commonly known as stop words), he used upper and lower frequency bounds to 

look for informative frequent words. Then sentences were ranked according to the 

number of frequent words they contained. The criterion for sentence ranking was 

very simple and would read something like this- 

 

 

If the text contains some words that are unusually frequent then the sentences 

containing those words are important. This quite simple technique which uses only 

high frequent words to calculate sentence ranking worked reasonably well and was 

modified by others to improve performance. Luhn provide a framework which can be 

used to measure various feature score for each text in the document. I used this 

approach with the weight of each term in the text instead of only frequency. 

 

Edmund son’s work exploiting cue phrases: Luhn's work was followed by H. P. 

Edmundson who explored the use of cue phrases, title words and location heuristic. 

Edmund son tried all the combinations and evaluated the system generated 

summaries with human produced extracts. 

 

The disadvantage of previous work is that they provide summary by cumulative 

effect various key features like-  

1- Sentence position 

2- Title adhoc 

3-Numerical data 

4-Noun world 

 

1.3 Similarity-based approaches to Document Summarization 

 

Similarity based summarization approaches are not new in the area of 

summarization. Similarity based summarization is an accepted, well-respected 

approach to document summarization. While there are many summarization systems 

that use similarity-based approaches, they are typically applied to monolingual 

summarization systems. Similarity finder allows the approach to be applied to lingual 

document summarization systems. Similarity finder takes documents in multiple 

languages as input, and outputs similarity values for pairs of sentences within and 

across languages. Chapter 5 presents two systems that use the similarity values 

output by Similarity finder. One system summarizes machine translated text and 
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replaces sentences with very similar English sentences to improve the readability of 

the summary. 

 

1.3.1 Highlighting Similarities   between difference Data and text 
 

A second summarization system using Similarity finder is novel in that it presents a 

summary in three parts that indicates both similarities and differences in the input. 

The CAPS system (Comparing and Contrasting Program for Summarization) 

described in Section 5.4 takes a cluster of English documents on the same topic as 

input. It generates a summary in three parts: information that is only present in the 

text, information that is only present in the English text and information that is 

supported by both the English text. While much previous work in summarization has 

been done on indicating similarities, very little work has been done on indicating 

differences between documents, or as in this case, groups of documents. 

 

 

1.1 Contributions 
 

1. Flexible framework for single lingual text similarity experimentation. I developed 

v, which supports rapid development of features for similarity computation for text, 

and support for different translation mechanisms over those primitives. This 

framework has allowed me to experiment with different combinations of primitives 

and translation methods as presented in  

 

 

2. Experimentation with and evaluation of different levels of translation for single 

lingual text similarity identification. I have examined how translation can be used at 

different levels for lingual text similarity identification. I have compared full 

document translation using machine translation systems to primitive level translation 

that translates at the word level and translation of phrases extracted from the 

documents. 

 

3. A focus on methods that is easily portable to new sentence. The main sentence pair 

presented in this thesis is English, but I have also used Similarity finder with very 

little engineering required to add support for that sentence. Using existing bilingual 

dictionaries for translation, or learning dictionaries from large collections of text and 

their translations (parallel corpora) allows one to quickly add support for similar text. 

 

 

4. Investigating primitives for similarity, and translating primitives across sentences. 

An original contribution of this work is the investigation of primitives that are 

compatible across sentences for the similarity computation process and methods of 

translating those primitives. Similarity computation performed over primitives and 

their translations extracted from the native sentence is more easily extensible to 

sentence for which we do not already have a full machine translation system. For 

high precision tasks requiring identification of English sentences, translation at the 

primitive level performs better than similarity computation using machine translated 
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input documents. In this work, I investigate word-level primitives, and named entity 

based noun phrase primitives for similarity computation text in English. This work 

takes the first steps to identifying further primitives that may be helpful for cross-

sentence similarity computation, and presents a framework for continued research in 

this area. 
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CHAPTER 2 

 
 
 

SIMILARITY IN ENGLISH TEXTS: SIMILARITY FINDER 

 

 
The concept of textual similarity is used in many applications that involve matching 

one text to another, such as information searching or retrieval, categorizing texts into 

pre-defined categories, filtering text, and text clustering. In these cases the similarity 

of a document is computed between a query, a category, a filter, or other documents. 

The work in this thesis is primarily concerned with text similarity at a lower 

granularity: typically the sentence or paragraph level. 
 

Similarity finder is a system designed and implemented for identifying similar units 

of short text, either paragraphs or sentences, and clustering related sentences into 

themes that express the same information. Similarity finder has been used in multiple 

summarization and question-answering systems. This chapter describes the 

Similarity finder system as implemented for English. I build upon the work done on 

Similarity finder by re-implementing a version that performs similarity identification, 

Similarity finder, described in Chapter 3. 

 

 

2.1 Related work in English text similarity 

 
2.1.1 Information Retrieval 

 
The concept of similarity is critical in the Information Retrieval field. The vector-

based document model as popularized by Salton's SMART system [33] represents a 

document as a word vector, and queries are matched to similar documents in the 

document database via a similarity metric. The word-vector based document 

representation views documents as collections of words, without regard to the 

original word order, or syntactic function of the words; such systems do not have          

information about which words are nouns or verbs, or what words are the 

grammatical subject or object. 

 

The task for information retrieval is to return a list of documents that are similar to a 

given query. Depending on the information retrieval system, the format of the query 

might be a document itself, a Boolean expression, a set of terms, and so on. In a 

standard vector-space information retrieval engine, the query document is mapped 

into the word vector space, and its distance to the other documents in the word-vector 

space is computed. 

 

The similarity between the documents and the vector-space representation of the 

query is often calculated using a distance metric, such as the Euclidean distance, or 
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the cosine of the angles between the two vectors. The documents are then ranked on 

the basis of this similarity measure, and the list is returned to the end user. 

 

In the task that I examine, there is no concept of a query to which all text units are 

compared. Instead, each text unit must be compared to every other text unit to 

compute similarity for the pair. The features that I compare similarity over are also 

context dependent while some of the primitives are similar to the vector-space model 

used in IR (simple overlap between words stems and tokens, for example), others 

features are more complex ,like features that require the two text units to have the 

same noun phrase followed by the same verb. Illustrates the differences between 

similarity determination and information retrieval. 

 

The full text documents used in information retrieval system contrast with the text 

units used in similarity finder for similarity comparison, which are much shorter, 

being sentences or even clauses. This leads to a data sparsely problem. Since the 

documents are larger, they tend to use a more varied vocabulary, so there is a larger 

possibility for overlap with the query when examining specific text units there just is 

not as much text, and so a particular set of terms is more likely to be missing. Since 

there is much less data to deal with compared to the full text of documents, it is more 

important to use more evidence than just distances based on the word vectors of the 

documents. For this reason, similarity finder uses a variety of features built over 

different primitives, such as nouns or verbs that investigate similarity in a number of 

linguistically motivated areas.  

 

2.1.2 Clustering Techniques 
 

Similarity finder uses clustering in two ways: 

� document clustering as a pre-input stage to similarity finder for identifying 

documents that are on the same topic 
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                      Figure 2.1: Comparison of IR to Multiple Document Similarity 

 

 

� Clustering text units via their similarity to create the output text \themes" 

Cluster analysis is a general technique for multivariate analysis that assigns 

items to groups automatically based on a similarity computation. Cluster 

analysis has been applied to Information Retrieval to provide more efficient 

or more effective retrieval, and to structure large sets of retrieved documents. 

When applying clustering to text documents, the attributes over which the 

clustering is performed and their representation must be selected, and a 

clustering method and similarity measure must be chosen. 

 



 

 

M.Tech.(C.S.) Thesis by Shivam Maurya Page 11 

 

 

When applied to information retrieval, data sets are often very large, from hundreds 

to tens of thousands of documents, which necessitate an efficient representation for 

processing the documents. The documents are usually represented as word-space 

vectors. 

 

 

2.1.2.1 Similarity measures - using term overlap 

 
In a survey of document clustering techniques, Rasmussen 1992 [9] finds that the 

similarity measures used for clustering are easy to compute based on term counts, 

usually the Dice coefficient, Jaccard coefficient, or cosine coefficient. These 

measures are computed based on the term occurrences in the documents. 

 

 
 

 

Where SDi, Dj is the Similarity of Document i compared to Document j, L is the 

total number of different words in the corpus, and weight ik is the weight of term k in 

documents i. The Dice coefficient takes into account the shared terms between two 

documents, and all of the separate occurrences of the terms in each of the documents. 

In Champollion, a system for statistical identification of collocation translations [8], 

the Dice coefficient is used as the similarity measure between collocations in 

different languages, since the Dice coefficient uses information on joint occurrences, 

and is not affected by cases where the term does not occur in either document. 

 

 

Jaccard coefficient: 

 

 
 

 

 

 

The Jaccard coefficient also takes into account the terms shared between two 

documents, but normalizes based on the union of the terms. 
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The cosine coefficient is commonly used in information retrieval applications, and 

measures the \angle" between two documents represented as word-space vectors. The 

calculation is quick to perform, and insensitive to the number of occurrences of terms 

in the document. 

 

 

For efficiency reasons, these similarity measures are computed using only term 

overlap; usually concepts such as term order, predicate-argument structure, and so on 

are ignored. Due to the sparse nature of the data when using text units the size of a 

sentence or paragraph, term overlap alone is not sufficient for our task. Similarity 

finder uses multiple linguistically motivated complex features to compute a 

similarity measure. These complex features have been shown to improve clustering 

performance for our data when compared to using only term overlap, evaluating 

clustering performance on one of our test data sets. Previous work on document 

clustering has not shown any clear preference of similarity measure (Rasmussen 

1992 [9],) although the three listed above are often used in information retrieval due 

to their ease of implementation and the property of normalizing for length. 

 

2.1.2.2 Clustering methods 
 

There are two general classes of clustering methods, hierarchical and non-

hierarchical. When applying these methods to document clustering, especially for 

information retrieval, the algorithms used are honed for efficiency so large document 

sets can be clustered. What differentiates the methods used is how similarity between 

points (documents or clusters) is computed. In the single link method, the closest 

previously unlinked points are joined, when distance between two clusters is defined 

as the distance between the closest two points between the clusters. The complete 

link method merges clusters based on the sum of the distances between all pairs of 

documents in two clusters. The group average takes the average distance of all pairs 

of documents in the two clusters as the distance. Ward’s method merges the clusters 

whose merge minimizes the increase in the total within-group variance. 

 

 

Studies have been conducted to examine which clustering methods are best for 

clustering large document sets. Voorhees [36] compared the single link, complete 

link, and group average methods of hierarchical clustering on document collections 

of up to 12,684 documents, and found that complete link was most effective for 

larger collections with complete and group average link comparable for smaller 
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collections. El-Hamdouchi and Willet compared the same methods plus Ward's 

method on document sets of up to 2,361 documents, and found that the group 

average method was most effective for document clustering. Hatzivassiloglou et al. 

[10] examine single link, complete link, group average, and single pass clustering 

methods using linguistic features in the distance metric for document clustering. 

They found in tests using as many as 40,000 documents that group average was the 

best clustering method, and that inclusion of linguistic features improved overall 

performance. 

 

2.2 English similarity finder 
 

The similarity finder program was developed to identify short passages of text that 

are similar to each other from a set of multiple documents on the same topic. 

Similarity finder has been developed to work with text from the domain of edited 

news text, where sentences often constitute entire paragraphs. As a pre-processing 

stage to similarity finder, documents are often sentence segmented, but in the news 

domain it can be helpful for similarity finder to use paragraphs, rather than sentences, 

as the unit of text because a paragraph is more likely to contain background 

information (such as proper nouns) relevant to semantic comparison. Similarity 

finder uses many linguistically-motivated primitives for short-passage-level, either 

sentence or paragraph, similarity detection. 

 

2.2.1 Similarity measure - Combining Linguistics and Machine 

Learning 
 

Similarity finder identifies similar pieces of text by computing similarity over 

multiple features. There are two types of features, composite features, and unary 

features. All features are computed over primitives, syntactic, linguistic, or 

knowledge-based information units extracted from the sentences. Both composite 

and unary features are constructed over the primitives. Hatzivassiloglou et al.'s 2001 

paper on similarity finder [14], illustrates some example primitives extracted by 

similarity finder through the use of two example similar paragraphs from the 

similarity finder training corpus. Typical types of primitives that are extracted by 

similarity finder include part-of-speech based primitives like all nouns, all verbs, or 

all adjectives. From the example, the verb primitives in the first sentence are (make, 

voice), and in the second sentence are (reject, mediate, say, invite, come, asses). 

While there are not any matches on the verb primitive type, there are matches on the 

noun and stemmed token primitive types, shown in the example in bold type. Unary 

features are feature that compare two sentences based on the overlap of a single 

primitive between the sentences, such as stemmed tokens or nouns. A unary feature 

over primitive p computes the similarity as the number of primitives of type p the 

two sentences 
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U.N. Human Rights Commissioner Mary Robinson made a landmark visit 

to Mexico at the government's invitation after voicing alarm last year of 

violence in the country's conflict-torn southern state of Chiapas. 

 

Mexico's government last year rejected suggestions the United Nations 

might mediate in the long running Chiapas conflict, saying it could solve its 

own internal affairs. But it did invite Robinson and a special rapporteur on 

extrajudicial killings to come and assess human rights for themselves in the 

country. 

 

 

 

Figure 2.2: Two similar paragraphs; the primitive features indicating similarities that 

are captured by similarity finder are highlighted in bold. 

 

 

 

 

Figure 2.3: A composite feature over word primitives, with the restriction that one 

primitive must be a noun and one must be a verb. 

 

Share in common divided by the number of unique primitive’s p in the two 

sentences. Unary features return a floating point similarity value in the range of 0{1. 

The more complex composite features return similarity values of either 1 or 0, and 

take two types of primitives. 

The composite feature returns 1 if the two sentences both have instances of the 

primitives specified by the composite feature that match any restrictions on the 

composite feature(that the primitives appear in the same order, or are within a certain 

number of words from each other.) Figure 2.3 and Figure 2.4 illustrate two types of 

composite feature matches. 

 

 

The paragraphs in Figure 2.2 have quite a few words in common, including 

government ,last, year, and country. They share several proper nouns: Robinson, 

Mexico, and Chiapas, which one might intuitively think should be weighted more for 

a match. Other similarities include words with the same stem, such as invitation and 

invite, and semantically related words such as killings and violence. Each of the 

An OH-58 helicopter, carrying a crew of two, was on a routine training 

orientation when 

contact was lost at about 11:30 a.m. Saturday (9:30 p.m. EST Friday) 

 

There were two people on board," said Bacon. \We lost radar contact with the 

helicopter 

About 9:15 EST (0215 GMT)." 
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these matches between words with the same stems are examples of matches on the 

stemmed token primitive, while the matches 

 

 

Boris Yeltsin was hospitalized Monday with what doctor’s suspect is pneumonia, 

the latest Sickness to beset the often ailing 68-year-old Russian president. 

 

Yeltsin has been hospitalized several times in the past three years, usually with 

respiratory Infections, including twice for pneumonia in 199 and 1998. The 

Kremlin tends to hospitalize The ailing president at the first sign of illness. 

 

Figure 2.4: A pair of paragraphs that contain a composite match; a word match and 

Award Netmatch (highlighted in bold) occur within a window of five words, 

excluding Stopwords. 

 

Between Mexico and Robinson are also matches on the Link IT noun phrase 

primitive, described in more detail in Section 2.2.1.1. The primitive features include 

several ways to define a match on a given word:  considers matches involving 

identical words, as well as words that matched on their stem, as noun phrase heads 

ignoring modifiers, and as word Net [22] synonyms. The matches of primitive 

features can be further constrained by part of speech and combined to form 

composite features attempting to capture syntactic patterns where two primitive 

features have to match within a window of five words (not including stopwords). The 

composite features approximate in these manner syntactic relationships such as 

subject-verb or verb-object (see Figure 2.3, also from their paper). In other cases, a 

composite feature can serve as a more effective version of a single primitive feature. 

For example, Figure 2.4 illustrates a composite feature involving word Net primitives 

(i.e., words match if they share immediate hyponyms in word Net) and exact word 

match primitives. On its own, the word Net feature might introduce too much noise, 

but in conjunction with the exact word match feature it can be a useful indicator of 

similarity. 

 

 

2.2.1.1 Identifying and Relating Noun Phrases: Link IT 
 

One of the important features used in Similarity finder is the Link IT feature, which 

indicates Matches based on the heads of noun phrases. The motivation behind this 

primitive is my previous work using Link IT for document characterization, 

indexing, and browsing. 

 

I developed Link IT as a document analysis and characterization system. Link IT 

identifies noun phrases in documents, and relates noun phrases within a document. I 

builtva grammar for noun phrase detection over part-of-speech tagged text for 

identification of noun phrases in documents, and a parser that builds links between 

the nouns phrases as they are extracted. Within a single document, noun phrases with 

the same head are linked together. Yarowsky [40] shows that with a single document, 

and often a single coherent collection, words tend to be used in the same sense, so 
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linking together instances of the noun phrases on the head brings together 

semantically related concepts. Presenting the list of related noun phrases can help to 

disambiguate the sense of the head by providing more contexts to the term. 

 

The use of noun phrases as index terms leads to a high quality browsing interface ,as 

shown in [38] which describes Intel Index, a document browsing index for Digital 

Libraries built using the output of Link IT to enable browsing by noun phrases. Noun 

phrases have also been shown to be useful in two other NLP tasks which depend 

critically on similarity: information retrieval and document clustering. D. A. Evans 

and C. Zhai [8]examine the use of noun phrases as index terms in an information 

retrieval engine, and found that indexing based on components of complex noun 

phrases improves both precision and recall. Noun phrases and proper noun phrases 

were shown to have a significant benefit in improving performance of the document 

clustering system described in Hatzivassiloglouetal. 2000 [10]. These applications of 

noun phrases to similarity based tasks indicate that they are a useful area to focus on 

for lingual similarity detection. 

 

2.2.1.3 Learning Method and Results 
 

With such a large number of features available to Similarity finder to use, one would 

like to have a way to automatically choose those features that are most helpful for the 

similarity identification task. Some of the features may have high values for all 

sentences, including those which are not similar, while more useful features will 

have high values for similar sentences only. To determine which features are useful, 

a training set of similar and dissimilar sentences created, and a machine learning 

framework is used to identify which features are important over the training data. 

 

A data set consisting of 10,535 manually marked pairs of paragraphs from the 

Reuters part of the 199 TDT pilot corpuses was developed. Each pair of paragraphs 

was judged by two human subjects, working separately. The subjects were asked to 

make a binary determination on whether the two paragraphs contained \common 

information". This was defined to be the case if the paragraphs referred to the same 

object and the object either 

(a) Performed the same action in both paragraphs, or 

(b) Was described in the same way 

In both paragraphs. The subjects were then instructed to resolve each instance about 

which they had disagreed. In this and subsequent annotation experiments they found 

significant disagreements between the judges, and large variability in their rate of 

agreement (kappa statistics between 0.08 and 0.82). The disagreement was however 

significantly lower when the instructions were as specific as the version above and 

those annotators were able to resolve their differences and come with a single label 

of similar or not similar when they conferred after producing their individual 

judgments. The level of similarity that is represented in the training data and that 

Similarity finder to recover automatically is much more one grained than in a typical 

information retrieval application; going from topical similarity down to the level of 

propositional content similarity. This same training data is also re-used to train the 

English component of Similarity finder. 
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The first version of Similarity finder output binary similarity values for each pair of 

input sentences using a rule-based classifier learned from the training data over the 

features that Similarity finder computed for each sentence pair. Similarity finder used 

a classifier trained over both primitive and composite features using RIPPER [5]. 

RIPPER produces a set of ordered rules that can be used to judge any pair of 

paragraphs as similar or non-similar. Using three fold cross-validations over the 

training data, RIPPER included 11 of the 43 features in its final of rules and achieved 

44.1% precision at 44.4% recall. The ten unary features were word overlap, proper 

noun overlap, Link IT overlap, verb overlap, noun overlap, adjective overlap, word 

Net overlap, word Net verb overlap, verb overlap, and stem overlap. One composite 

feature was selected, word Net collocation, which is a match between the WorldNet 

primitive and the word primitive (see [13] for more details on the various features). 

The selection of eleven features rather than just words validates the claim that more 

than word matching is needed for effective paragraph matching for summarization. 

The claim is also verified experimentally; the standard TF*IDF measure [34], which 

bases similarity on shared words weighted according to their frequency in each text 

unit and their rarity across text units, yielded 32.6% precision at 39.1% recall. They 

also measured the performance of a standard IR system on this task; the SMART 

system [2], which uses a modified TF*IDF approach, achieved 34.1% precision at 

36.% recall. 

 

21 of the 43 original features were normalized according to the matching primitives' 

IDF scores (the number of documents in the training collection they appear in). 

RIPPER selected none of those features, which suggests that TF*IDF is not an 

appropriate metric to use in evaluating similarity between small text units in a system 

such as ours. This observation makes sense given that in Similarity finder the 

collection of documents from which document frequency is calculated has been 

altered by topic and date. Thus, a primitive that would be rare in a large corpus could 

have an abnormally high frequency in the relatively small set of related documents 

on which Similarity finder operates. 

 

The current version of Similarity finder, Similarity finder1.1, changed the machine 

learning approach to allow for values of similarity in the full range between 0 and 1 

rather than the \yes"/\no" decisions that RIPPER supports. Such real-valued 

similarities enable the clustering component of Similarity finder to give higher 

weight to paragraph pairs that are more similar than others. Similarity finder1.1 uses 

a log-linear regression model to convert the evidence from the various features to a 

single similarity value. This is similar to a standard regression model (i.e., a weighted 

sum of the features) but properly accounts for the changes in the output variance as 

we go from the normal to the binomial distribution for a response between 0 and 1 

[26].  

 

A weighted sum of the input features is used as an intermediate predictor, ή which is 

related to the final response R via the logistic transformation  
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Via an iterative process, stepwise refinement, the log-linear model automatically  

selects the input features that increase significantly the predictive capability of the 

model, thus avoiding overlearning. Their model selected  input features, and resulted 

in a remarkable increase in performance over the RIPPER output (which itself 

offered significant improvement over standard IR methods), to 49.3% precision at 

52.9% recall. The seven features selected are a sub-set of the features selected by 

RIPPER: six unary features, word stem overlap, noun overlap, verb overlap, 

adjective overlap, word Net overlap, proper noun overlap, and Link IT overlap. The 

single composite feature selected matches to the word Net primitive and a word 

primitive. As in the case of the RIPPER model, the automatic selection of multiple 

features in the log linear model validates the hypothesis that more than 

straightforward word matching is needed for effectively detecting similarity between 

small pieces of text. The focus on noun phrases, as seen by the selection of the Link 

IT feature, is also continued in this model. 

 

2.2.2 Clustering Algorithm Tailored for Summarization 
 

Once similarities between any two text units have been calculated, they are fed to a 

clustering algorithm that partitions the text units into clusters of closely related ones. 

Similarity finder clustering algorithm [14] departs from traditional IR algorithms, 

and is instead tailored to the summarization task's requirements. In Information 

Retrieval, hierarchical algorithms such as single-link, complete-link, and group wise-

average, as well as online variants such as single pass are often used [9]. Compared 

to non-hierarchical techniques, such algorithms trade some of the quality of the 

produced clustering for speed [18], or are sometimes imposed because of additional 

requirements of the task (e.g., when documents must be processed sequentially as 

they arrive). For summarization, however, the distinctions between paragraphs are 

often one-grained, and there are usually much fewer related paragraphs to cluster 

than documents in an IR application. 

 

Similarity finder uses a non-hierarchical clustering technique, the exchange method 

[Sp a85], which casts the clustering problem as an optimization task and seeks to 

minimize an objective function measuring the within-cluster dissimilarity in a 

partition P = fC1;C2; : : : ;Ckg 

 

                   
 

Where the dissimilarity d(x; y) is one minus the similarity between x and y. The 

algorithm proceeds by creating an initial partition of the text units that are to be 

clustered, and then looking for locally optimal moves and swaps of text units 
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between clusters that improve until convergence is achieved. Since it is a hill 

climbing method, the algorithm is called multiple times from randomly selected 

starting points, and the best overall configuration is selected as the final result. 

 

The clustering method is further modified to address some of the characteristics of 

data sets in summarization applications. To reduce the number of paragraphs 

considered for clustering, an adjustable threshold is imposed on the similarity values, 

ignoring paragraph pairs for which their evidence of similarity is too weak. By 

adjusting this threshold, the system can be made to create small, high-quality clusters 

or large, noisy clusters as needed. Since every paragraph in that altered set is similar 

to at least another one, an additional constraint on the clustering algorithm to never 

produce singleton clusters is imposed. 

 

Similarity finder also uses a heuristic for estimating the number of clusters for a 

given set of paragraphs. Since each cluster is subsequently transformed into a single 

sentence of the final summary, many small clusters would result in an overly lengthy 

summary while a few large clusters would result in a summary that omits important 

information. Similarity finder uses information on the number of links passing the 

similarity threshold between the clustered paragraphs, interpolating the number of 

clusters between the number of connected components in the corresponding graph 

(few clusters, for very dense graphs) and half of the number of paragraphs (lots of 

clusters, for very sparse graphs). In other words, the number of clusters c for a set of 

n text units in m connected components is determined as 

 

                 
 

 

                                             
  

Where L is the observed number of links and p is the maximum possible Number of 

links. Similarity finder uses a non-linear interpolating function to account for the fact 

that, usually, L is less than or equal to P. The features selected for use with the log-

linear regression model are word stem overlap, noun overlap, verb overlap, adjective 

overlap, word Net class overlap, proper noun overlap, and Link IT overlap. [14] 

presents further details as well as an evaluation of Similarity finder, and its 

application in two summarization systems. 

 

2.3 A Flexible Framework for Similarity finder 

I present work that uses Similarity finder with machine translated text as input. I also 

apply syntactic sentence simplification to English text that is used as input, thus 
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reducing sentence length and removing context. In both of these cases, Similarity 

finder is being used with input that is different from the sort of input used in its 

training, and so I made some modifications to the system to improve performance 

under these conditions. 

Using Similarity finder to compute similarity between machine translate English 

sentences and English sentences, and details an altering step that I added which alters 

out sentences that are often not similar but that Similarity finder labels as similar 

when using syntactically simplified sentences and machine translated input. The alter 

removes sentence pairs with a cosine similarity below the threshold of 0.1, which has 

a 6% accuracy of identifying sentences that humans judged as not similar despite 

having a high Similarity finder similarity score. 

 

Similarity finder presents the starting point for my original work in the area of 

lingual sentence similarity. Similarity finder, presented in full in Chapter 3, is a re-

implementation of the ideas from Similarity finder, along with a framework that 

allows for easier addition of features and primitives, and a translation stage for 

relating primitives across languages. The ability to easily create new primitives is 

important for lingual similarity, as different languages can have vastly different 

computational resources available. With Similarity finder it is possible to define the 

primitives and features to use at run-time in a configuration, allowing one to use 

Similarity finder with different languages without modification of the program itself, 

which would not have been possible with Similarity finder. 
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CHAPTER 3 

  

 
 

SIMILARITY BASED TEXTS SUMMARIZATION 

 

 
Similarity finder is a re-implementation of the English version of Similarity finder. 

Focuses on adding support for computing similarity between multiple languages by 

making it easy to add new features and primitives. This chapter presents previous 

work in lingual text similarity, the approach I have taken to English language text 

similarity, the architecture of the Similarity finder system, and a description of the 

work required to add support for the language to Similarity finder.  

 

3.1 Motivation 

There are many applications of text similarity in Natural Language Processing. 

Approaches to multi-document summarization using text similarity have excelled at 

identifying content that is repeated and emphasized in the document set, and are able 

to take advantage of the identification of repetition to include important information 

and reduce redundancy in the summary. Text similarity measures have also been 

used in question answering systems, again to indicate importance via identifying 

repetition of text, and to reduce redundancy. Other opportunities for monolingual text 

similarity are for plagiarism detection and the detection of similar patent applications 

in an overburdened patent filing office. One area that has not seen much focus is 

lingual text similarity. 

 

Similarity metrics would be useful is in machine translation. A good text similarity 

metric could be used as a scoring function for a statistical machine translation 

system, although Similarity finder in practice isn't designed for that sort of use. 

Given a foreign language string, and multiple generated translations, the text 

similarity metric could be used to prune non-similar translations, retaining similar 

ones for scoring via a language model of the target language. The core hypothesis of 

my similarity detection approach is that similarity between sentence-level units can 

be computed on the basis of easily extracted low-level primitives, without the need to 

explicitly model semantic sentence meaning. Extending this idea to similarity 

computation between languages, I hypothesize that similarity can be modeled by 

identifying simple lexical and syntactic primitives in the source and target languages, 

and by using translation at the level of the primitives to generate matches for the 

features used to compute the similarity score. This approach is attractive in that it 

allows for easy integration of foreign languages for which not many resources are 

available; if large parallel corpora are available, a statistical translation dictionary 

can be learned which achieves moderate performance. 
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The approach I have taken to similarity computation in Similarity finder is to: 

 

� Identify and extract primitives basic units compared between sentences  from 

the text 

� Translate primitives between languages 

� Compute features over extracted primitives 

� Merge feature similarity values between sentences into a single, final 

similarity value for each sentence pair 

 

Similarity finder identifies similar pieces of text by computing similarity over 

multiple features. All features are computed over primitives, syntactic, linguistic, or 

knowledge based information units extracted from the sentences. Examples of 

primitives are all nouns In a sentence, all verbs, all person names, or other sorts of 

information that can be identified automatically that might indicate similarity on 

some axis that can be separated from other axes. Primitives are extracted by modules 

that are loaded at runtime for each language, and features are defined over the 

extracted primitives. Both primitives and features are explained in more detail in 

Section 3.3.2 and Section 3.3.4. 

 

Section 3.3 presents details about Similarity finder's architecture, and how the above 

steps are carried out, while section 3.4 is an in-depth discussion about adding English 

language support to Similarity finder and evaluation results. Support for other 

languages is discussed in section 3.5. 

 

3.2 Related work in sentence similarity based text summarization 

The English version of Similarity finder is the main innocence on Similarity finder, 

but is not included in this section as it is a monolingual system. Similarity finder 

takes the approach to text similarity introduced by English Similarity finder and 

modularizes the system to make it easier to add new features and primitives, as well 

as support for translation mechanisms between languages to allow for lingual 

similarity computation. This section focuses on other work in lingual text similarity. 

 

3.2.1 Example based machine translation 

Example based machine translation systems [6] became popular in the 1980's and 

1990's, and introduced a new paradigm for machine translation: using similarity to 

previous translations to generate a new translation. In example based machine 

translation systems, an input source sentence is matched to other source sentences in 

a translation database via a similarity metric. The translation database typically 

contains short sentences or phrases in the source language, and aligned translations 

into the target language made by a professional translator or automatically through 

corpus alignment methods. The similarity metric typically involves part of speech 

tagging and low-level parsing or thesauri and other knowledge bases to identify 

possible synonyms or words substituting from a similar semantic or grammatical 

category. Exact matches between the source sentence and translation database 

improve the score, while matches on tokens with the same semantic or grammatical 
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category improve the score less so and a lack of match on a token decreases the 

score. Usually multiple matches to phrases are used to cover the entire source 

sentence to translate. Translation involves substituting the target language translation 

for each example matched for the source sentence, replacing words in each example 

that were not exact  matches, and ordering and re-generating any connective text 

from the examples to cover the entire sentence. 

 

There are many differences between example based machine translation system and 

Similarity finder. Similarity finder similarity metric is lingual; in example based 

machine translation systems, a source language sentence to be translated is matched 

to other source language sentences, while in Similarity finder similarity is computed 

between all the input sentences, some of which are in similar languages. Also, the 

examples in the translation database are often not full sentences as would be found in 

the news domain, but shorter sentence fragments. Similarity finder computes 

similarity between full sentences, and allows For a larger deviation in the structural 

similarity between the sentences, compared to example based machine translation 

which requires high syntactic similarity between the source and example for the 

translation of the example to be applicable. 

 

The most related aspect of cross-language information retrieval to similarity finder is 

that of query translation and query {document similarity computation. In CLIR, short 

queries are translated into a language, and a similarity measure is computed between 

the query and documents. Similarity finder computes similarity between all 

sentences, not just a single query. Some of the same problems appear in both 

contexts, but since similarity finder deals with sentences, and not full documents, the 

problem of over-generalization when translating a term is not as severe. Additional 

terms added to a translated[5,3] query that have a different sense from the original 

query term are problematic because in large collections, it is likely that some 

document contains the spurious term. Similarity finder deals with shorter units of text 

and a spurious term are not as likely to appear. Similarity finder also uses bilingual 

lexicons for translation, and morphological analysis software or stemming to 

normalize words, and proper name identification and translation is implemented 

using BBN's identifiers. Similarity finder approach is more sophisticated; using 

Jaccard-like similarity over multiple features combined using a log-linear regression 

into a single similarity value, as compared to just doing a cosine vector-space 

distance in the term space, which is a common information retrieval approach. 

Similarity finder use of multiple features and ability to compute similarity for one-

grained units of text set it apart from CLIR systems. 
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3.2.3 Statistical machine translation 

Brown et al. [18] introduced a statistical machine translation system in the 1990's 

that has spurred a huge amount of research into purely statistical based machine 

translation. In this approach, language translation is viewed as the task of 

constructing a language model that estimates the probability of a given sentence S in 

the source language, and a translation model that estimates the probability of 

producing a target sentence T given a source sentence S. Translation is then cast as 

maximizing 

 

                              

The cross-language similarity portion of similarity finder would fit well into this sort 

of framework for similarity identification, since it mirrors the translation task well. 

 

Similarity finder does use results from statistical machine translation community by 

taking advantage of models for learning probabilistic dictionaries. In implementing 

the English portion of similarity finder, I use a dictionary learned from an IBM 

model 3 style translation probability models, which helped improve results over 

translation by dictionary lookup alone. A distortion model might also help improve 

similarity finder results at finding sentences that are translations of each other, 

however, since similarity finder is searching for similar sentences that might not be 

translations of each other, a distortion model might  impose too many restrictions, 

giving similar, but structurally different sentences, low probabilities. Application of 

an IBM-style statistical model to intra-language similarity computation would be 

interesting as well, but faces the problem of training data. Given enough examples of 

sentences that are similar to each other, I think a statistical model that encodes the 

similarity of words such as shoot and attack would be very useful, although these 

sorts of relationships are also available by using primitives informed by word Net or 

other linguistic knowledge bases. 

 

3.2.4 Sentence alignment cost functions 
 

Parallel corpus sentence alignment is another area that implements a cross-lingual 

similarity function. The earliest approach, Gale and Church's program for bilingual 

sentence alignment [9], uses word length in characters as the main cost function 

between languages and dynamic programming to find the best alignment over 

sentences. Using even just a simple cost function as length resulted in surprisingly 

good results between French and English. More recent approaches such as [24] 

improve on the cost function using bilingual lexicons, or learning them on the way, 

and make improvements in adding linguistically derived information, such as 

statistical phrases or sub tree grammars. 

 

Similarity finder does not perform the same task as sentence alignment because 

sentences are not assumed to map to another sentence in the target language; the 

approach of computing a cost for alignment and then maximizing the total cost to 
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match sentences to each other (or null) is not valid in this context. Similarity finder 

does make use of similar ideas though, especially in employing bilingual lexicons to 

anchor matches between the languages. 

 

 

 

3.2.5 Lingual Phrase Translation 
 

Malamud’s method for discovering non-compositional compounds in parallel text 

[23] Takes a similar approach, but does not require a list of collocations in the source 

language. His method compares translation models that contain potential non-

compositional compounds built up word-by-word from highly correlated terms in 

parallel corpora to translation models that do not contain the potential non-

compositional compound, and chooses to include compounds that increase the 

predictive power of the translation model. This method is only capable of finding 

non-compositional compounds that are not translated word-for-word, and the 

compounds it finds translate as a unit, but might not be considered collocations in the 

source language. 

 

3.3 Similarity finder   Architecture 
 

Similarity finder is designed to be modular system. Similarity finder identifies 

similar pieces of text by computing similarity over multiple features. There are two 

types of features, composite features, and unary features. All features are computed 

over primitives, syntactic, linguistic, or knowledge-based information units extracted 

from the sentences. Both composite and unary features are constructed over the 

primitives. The primitives used and features computed can be set at run-time, 

allowing for easy experimentation with different settings, and making it easy to add 

new features and primitives. Support for new languages is added to the system by 

developing modules conforming to interfaces for text pre-processing and primitive 

extraction for the language, and using existing dictionary-based translation methods, 

or adding other language-specific translation methods. As shown in 
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                                  Figure 3.1: similarity finder Architecture. 

 

 

3.3.1 Pre-processing 
 

The first module is a pre-processing module, which prepares the input articles for 

processing. I have designed a language-independent API that abstracts the 

generalized pre-processing steps for the similarity discovery task. The steps in the 

pre-processing stage are to segment the text of the documents into units to compare 

for similarity, and to create alternative representations of the text, such as part of 

speech tagged versions, that will be used in later stages to extract primitives. 

 

Similarity finder supports using different levels of granularity for similarity 

computation by segmenting the text into units using a user-specified segmentation 

class. I have focused on computing similarity at the sentence level, but similarity 

finder is not limited to processing sentences. Sentences offer a unit that can stand on 

their own, and while anaphoric reference can be a problem, the level of the sentence 

has been a good unit to work with for many applications. To support different text 

segmentation schemes, a user needs only to create a Java class that adheres to the 

sentence segmentation interface, and since these classes are loaded at runtime, 
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changing the type of segmentation used is very easy. I have implemented English 

sentence segmentation using simple regular-expressions based classes, and an 

interface to the MXTerminator1 [6] sentence segmentation program for English. The 

second part of the pre-processing stage is to create different representations of the 

text that will be used to extract primitives. The representations of the text react some 

form of mark-up or tagging that might be used in the primitive extraction phase to 

identify and extract primitives from the text. As with the other stages, classes are 

loaded at run-time to perform this task, making it easy to add new representations for 

a language. I have implemented English part-of-speech tagging, English and 

Japanese morphological processing, and English named entity recognition using 

existing tools in the similarity finder framework via this interface. 

 

3.3.2 Primitive Extraction 
 

In order to define similarity between two units, we need to identify the atomic 

elements used to compute similarity. These are called primitives. Primitives are 

general classes (for example, all stemmed words, all nouns, all noun phrases), while 

a particular instance of a primitive would be a specific word, or a specific noun 

phrase. Similarity between two units is computed using features over these 

primitives, which will be discussed shortly. The second stage identifies and extracts 

primitives for each unit. Primitive extractors are defined on a per-language basis 

using a plug-in architecture making it easy to add support for different languages by 

simply creating primitive extractors for that language. The primitive extraction, 

primitive linking, and similarity computation phases all interact with data structures 

that track which units contain which primitives on a per-language basis. These data 

structures allow us to select sets of text units that contain common primitives for 

comparison, while avoiding comparisons between text units that do not contain any 

primitives in common, and provide a central location at which to translate all of the 

primitive types that are seen in English. 

 

There are ten primitive extractors implemented for English: all tokens, stemmed 

tokens, word Net classes, nouns, verbs, proper nouns, heads of noun phrases, 

adjectives, cardinals, and named entities. Token primitive extractors have also been 

implemented. The primitive extractor performs word segmentation using the main 

segment. Perl dictionary-based Chinese word segmentation program from the LDC. 

The Japanese primitive extractor first processes the text with Chosen [1], and then 

extracts the morphologically-analyzed text. 
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For example, for the sentence. 

 

 

 
And the following named entity primitives are extracted: 

 

 
 

 

Primitive extractors operate over the original text of the unit, or use one of the 

representations created earlier, such as a named-entity of part-of-speech tagged 

version of the text. As each primitive is extracted, they are recorded in the text units, 

and entries are made in a per-language index (labeled Big Board in Figure 3.2) 

tracking which text units contain each primitive. 

 

Features built over the primitives are used to compute how similar sentences are. For 

example, a pair of sentences will have five feature similarities computed that how 
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similar sentences are based on tokens, nouns, verbs, word Net, and named entity 

features. When all primitives have been extracted, Similarity finder relates primitives 

that mean the same thing across languages using a translation mechanism. Primitives 

within a language already track the units that contain the same primitive, and by 

using word Net primitives are identify. 

 

3.3.3 Primitive Linking 
 

Once all of the primitives have been extracted from the units, similarity finder 

collects lists of which units contain the same primitives. The final phase before 

features is computed over. The units are to determine which primitives from one 

language are translations of primitives in another language. In my application, I am 

concerned with finding translations from a non-English language into English, since 

I am working under the assumption that I will always have some English language 

input. Because of this, I focus on finding similarity from non-English to English text 

units. Extending similarity finder to search for links between a language and another 

non-English language would be quite easy as long as some translation facility existed 

for the language pair of interest. The translation facility does not have to be on the 

order of full machine translation; similarity finder has shown that translation using 

bilingual lexicons or learned probabilistic dictionaries can results in high-precision 

for cross lingual text similarity computation. 

 

Similarity finder does not itself contain any mechanism for identifying and linking 

words that are synonymous. Within a single language, the choice of primitives is 

assumed to resolve problems of synonymy by extracting primitives that encapsulate 

that relationship, such as the word Net. Words that are synonyms will be mapped 

into the same word Net sunset, and thus match other word Net primitives for words 

in the same sunset. 

 

The primitive linking phase is not a full translation phase. Since the goal is to use the 

translations to link to other potentially related primitives, I prefer to err on the side of 

opportunistically linking two primitives even if there might only be a tenuous 

relationship between them. Since there is at least one primitive for each token in a 

sentence, there are often a large number of primitives to compare between two 

sentences. Sentences that are similar usually have more than a single link between 

translated primitives due to additional links from other related words in the sentence. 

By making many links, even when the translation is tenuous, the additional matches 

from relevant words will help to reinforce similar sentences. Since our input consists 

of topically-clustered documents. Similarity finder supports some simple dictionary-

based translation methods for linking primitives across languages. Similarity finder 

has support for three types of dictionary formats: a simple word to word format 

called the IDP dictionary format3, the edict format4 for Asian languages, and a 

simple probabilistic dictionary format for dictionaries learned from parallel corpora. 

Extending the dictionary support for other languages is quite simple by adhering to 

the generic dictionary interface. 
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3.3.4 Similarity Computation 
 

Similarity between two units is computed on multiple features defined over the 

primitives identified for each unit. Before performing the actual comparison between 

the units, the units which should be compared are identified. Similarity finder uses an 

approach that avoids comparing units that will not be found to be similar. To collect 

units to compare, a primitive is chosen from the primitive-tracking data structure 

(Big Board for each language), and all units containing the primitive or a linked 

primitive are compared against each other. An N * N array, where N is the number of 

text units, tracks which units have been compared, ensuring that similarity is 

computed only once for each pair of units. A new primitive is selected, and the 

process is repeated until all primitives have been used for all languages. This 

approach only compares units that have a chance to be similar, while avoiding 

comparison between units that share no primitives in common. Units that have no 

primitives in common cannot be found to be similar by the similarity equation 

computed over the features, and will be skipped because they have no primitives in 

common, leaving The similarity comparison between two units is computed over 

multiple features defined on the primitives.  

The most common feature is overlap between primitives of the same type. For 

example, if similarity finder has been set to extract token, verb and word Net 

primitives, three features that compare the overlap on each primitive could be set up. 

In that case, similarity finder would set up an N * N * 3 similarity matrix that tracks 

the similarity for each feature between pairs of Units. Each entry is computed as the 

number of primitives that are shared in common between the two units, divided by 

the total number of primitives in the two units, possibly normalized by the unit 

lengths. Primitives are weighted by the strength of the links between them if they are 

translations. Figure 3.4 shows how three primitives are linked between English 

sentences. 

 

The similarity of two units, U1 and U2 with primitives P1 and P2, with the strength 

of a link between primitive P1a and P2b given as WP1a; P2b is defined as: 

 

 
 

Similarity finder also supports composite features, which compute a function that is 

either 0 or 1 depending on the state of two primitives between the units. A composite 

feature requires two primitives, such as verb and word Net primitives, and returns 1 

if the two sentences both contain instances of the two specified primitives that match 

other criteria (the two must be within a certain distance of each other, and possibly 

react the same ordering, e.g., Verb, word Net and Verb, word Net. 
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F1: Sentence Position 
 

We assume the first sentence of a paragraph is the most important. Therefore we rank 

a sentence in the paragraph according to their position. E.g. if there are 5 sentences in 

the paragraph then the 1st sentence have a score of 5/5, Then 2
nd

have score 4/5, 3rd 

have 3/5 and so on. 
 

F2: Positive keyword in the sentence 
 

Positive keyword is the keyword frequently included in the summary. It can be 

calculated as follows: 
 

 
 
 
 

Tfi is the occurrence or frequency of it term in the sentence, which probably is a 

keyword. 

 

F3: Sentence Relative Length 
 

This feature is useful to filter out short sentences such as datelines and author name 

commonly found in news articles. The short sentences are not expected to belong in 

the summary. We use length of the sentences, which is the ratio of the number of 

word occurring in the sentence over number of word in the longest sentence in the 

document. 
 

 
 

 

F4: Sentence resemblance to title 
 

It is the measure of vocabulary overlap between this sentence and the document title, 

generally the first sentence in the document is probably the title of the document. It is 

calculated as 
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F5: Sentence inclusion of name entity (Proper noun) 
 

Usually the sentence that contains more proper nouns is an important one and it is 

most probably included in the summary. Proper noun gives the literature of contents. 
 

 
 

F6: Sentence inclusion of numerical data 
 

Sentences that contain numerical data are more important than rest of sentences and 

are probably included in the summary. 
 

 
 

F: Term Weight 
 

The frequency of term occurrence within a document has often been used for 

calculating the importance of sentence. The score of sentence can be calculated as 

the sum of the score of word in the sentence. The score or weight wi of ith term or 

word can be calculated by traditional tf-idf. 
 

 
 

 

F8: Sentence similarity with other sentence 
 

This feature measures the similarity between sentence S and each other sentences. It 

measures how much vocabulary overlap between this sentence and other sentences in 

the document. It is computed by cosine similarity measure with resulting between 0 

and 1. The score of this feature for a sentence S is obtained by computing the ratio of 
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similarity of sentence S with each other sentence over the maximum similarity 

between two sentences. 
 

 
 

F9: Bushy path of the Sentence or node Sentence centrality 
 

It has an overlapping vocal bury with several sentences it is defined as the number of 

links connected it to other sentences (node) on similarity graph. Highly busy node is 

linked to the number of other nodes. The busy path is calculated as follow: 
 

 
 

 

3.3.5 Merging Feature Similarity Values 
 

The goal of similarity finder is to group textual units from multiple languages with 

similar meaning together. To do this, similarity finder uses a clustering algorithm 

over similarity values between the units. The clustering algorithm requires a single 

similarity value, but after the similarity computation stage, similarity is expressed 

over multiple features, so they must be merged into a single similarity value. This 

section deals with obtaining a single similarity value between units from the feature 

similarity values. Section 3.3.6 deals with clustering the units using the similarity 

values. 

 

The similarity computation process used in similarity finder  creates a similarity 

matrix between the units on several dimensions. For each of the primitives extracted 

from the units, a feature comparator is used to compare the similarity of the two units 

over that primitive. The similarity computation stage results in an N *N *F similarity 

matrix, where N is the number of textual units, and F is the number of features that 

were used during the run. Before clustering the units, the N *N * F feature similarity 

matrix is converted into an N *N matrix such that each element contains a single 

value expressing the total similarity between the two units. 

 

 The log-linear regression model, weights must be learned for the linear combination 

of the features. For the English version of similarity finder, a training set of similar 

textual units has been developed by human judges who made a similarity decision 
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over pairs of textual units. The lingual version of similarity finder  requires the same 

sort of training data. Small Each of the annotators read all articles in the training 

document sets, containing  English articles, and listed sentences in and English that 

expressed the same information. The amount of effort involved in this exercise was 

great, and since it would be very difficult to obtain a similar amount of training data 

used for English similarity finder, when training a model English similarity, I took a 

different approach: I used a sentence aligned parallel corpus for training examples. 

This alternative approach, which does not require manually annotated similarity 

training data. 

 

3.3.5.1 Challenges for Lingual Feature Merging 
 

While the above approach is tenable in the monolingual case where training data is 

available, there are additional problems in the lingual case. The features that are 

available for two textual units from different languages are usually different. For 

example, for English in similarity finder there are multiple primitives (part-of-speech 

based, stemmed tokens, word net classes, etc.) while only the token primitive has 

been implemented. When calculating the final similarity value between English and a 

text unit, the only feature that can be used is similarity as determined by overlap on 

tokens via dictionary lookup. As more primitives and more sophisticated primitive 

linking techniques are added, the number of features compatible between units in 

similar languages will change as well. Since similar languages will have different 

sets of compatible features, it is important to easily be able to switch feature merging 

models to suit the compatible primitives, and to be able to learn these models across 

languages.  

To determine weights for the different combinations of language pairs, I perform a 

similar training step to learn the exponents for feature weighting as in the English 

case. This requires training data for the regression step, which is even more difficult 

to obtain than in the English monolingual case: the human judges have to be able to 

read and make similarity judgments over texts in all of the languages being clustered. 

Instead of tagging training data manually as was done for the English training data, I 

have taken a different approach and used data from the Machine Translation 

community. In Section 3.4.4 I detail the training data used for the English version of 

similarity finder, which is from the Multiple Translation English corpus from the 

LDC6. As with in the monolingual English case, the final similarity score is 

computed using a feature merging model that merges the feature similarity scores 

into a single similarity score. The training data for the feature merging model is 

generated in the same way as with the English case: similarity finder is run over the 

training data, creating feature similarity values for each training instance, using 

primitive translation as explained above to link primitives across languages. The 

sentences that are aligned in the parallel corpus or marked as similar in the case of 

manually annotated similarity training data) are marked as similar, other sentences 

are marked as not similar.  

The similar sentences are transformed into a target value of 1 for the log-linear 

regression model, and 0 for not similar sentences. The log-linear regression then 

learns exponent values for the model to best approximate the target similarity value. 
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The clustering stage is unaffected by the lingual data, since it relies only upon the 

final similarity values. 

 

3.3.6 Clustering 
 

The process of clustering the textual units is a separate stage that uses the final 

similarity values computed. The clustering component uses the optimization-based 

method described in Hatzivassiloglou etal. 2001 [14]. The clustering method requires 

the number of output clusters to be specified, which is estimated for each input 

document set using the same estimation as the English version of similarity finder. 

The estimation is based on the similarity values between the textual units. The 

number of clusters c for a set of n textual units in m connected components is 

determined by- 

 

 

                                         
 

where L is the observed number of links between units based on their similarity 

being above a threshold, and P is the maximum possible number of links. A non-

linear interpolating function is used to account for the fact that usually L is less than 

or equal to P. See Section 2.2.2 for more details. 

 

3.4.2.1 Word feature matching 
 

The basic primitive translation used is dictionary lookup in the Buck Walter 

morphological analyzer available from the LDC. A match is made between  primitive 

and an English primitive if there is a non-stop word English translation in the Buck 

Walter lookup that matches the English primitive, with the strength of the match 

determined by the total number of English translations for the English word. Since 

each word may result in multiple analyses, and each analysis may contain multiple 

English glosses, the weight given to each English translation may be very small. No 

sense disambiguation is performed, so there may be spurious matches made. For an 

illustration of the translation method. 

 

3.4.2.2 Using a probabilistic dictionary 
 

The second translation method I use for English is lookup in a probabilistic 

translation dictionary. Similarity finder supports two translation dictionary formats, a 

simple word-to-word format, and a probabilistic format (see Section3.3.3 for 

supported dictionary formats.) The probabilistic format maps English tokens to 
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English tokens with probability for the likelihood of the translation. Describes the 

process used to learn the probabilistic dictionary used in similarity finder English 

word lookup. When using the probabilistic dictionary,  primitive is looked up, and a 

link is made between the primitives for each target English token that exists. The 

strength of the link is assigned the probability of the translation from the dictionary. 

This translation method addresses one of the problems with the Buck Walter 

translation method; the probabilities in the dictionary assign links between likely 

translation pairs, and discount less-likely, but valid, translations. 

 

3.4.2.3 Named entity feature matching 
 

Named entity features are extracted from the text using BBN's Identity Finder for 

both English. A match is found between Identity Finder primitives using either 

dictionary lookup via the Buck Walter dictionary, or passing the entire named entity 

to a translation system.8 If using the machine translation system, the entire text of the 

translated named entity must match, otherwise, if there is at least one non-stop word 

overlap between the English and glosses for English  word, a match is made. No 

disambiguation is performed, nor is locality of the text taken into account. 

 

3.4.3 Learning a probabilistic English dictionary 
 

To improve word translation I learned a probabilistic dictionary English using the 

GIZA software package [ON03] for statistical machine translation. I used the default 

settings for a model 3 alignment with the entire text of the  English Parallel News 

Part 1 Corpus9 from the LDC. The corpus contains English news stories and their 

English translations LDC collected by the Ummah Press Service from January 2001 

to September 2004. It totals 8,439 story pairs, 68,685 sentence pairs, words and 2.5M 

English words. LDC sentence-aligned the corpus, making it suitable to use for 

learning a translation dictionary. I generated the appropriate input  for GIZA, ran 

GIZA, and used the resulting final word translation table to generate a dictionary that 

lists all words that were seen at least four times. Both the probabilistic dictionary and 

Buck Walter translation mechanisms have been used for various experiments 

reported. 

 

3.4.4 Feature Merging Model Training Data 
 

Similarity finder uses a log-linear model to generate the single similarity value 

between two sentences. In English case, a model must be learned that converts the 

two feature overlap values into a single similarity value. To do this, I require 

examples to use as training data for the regression analysis. Since using bilingual 

English annotators to mark sentences for similarity in a training corpus would be 

expensive and difficult to obtain, I used an existing corpus from the Machine 

Translation community of aligned translated sentences. The motivation is that 

sentences that are translations of each other are certainly similar to each other, and 

what is learned from training over this data should generalize to sentence pairs that, 

while not being exact translations of each other, are similar. The benefit of training 
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over data that is not the exact same as the target data that we plan to test with is that 

this type of training data is  much more readily available. 

 

I used the Multiple Translation  corpus from the LDC as my training corpus. For 

each of the 141 English documents, I chose one of the manual English translations 

(the English translations labeled ahd, as those translations were generally accepted to 

be of the highest quality) and ran similarity finder over the pair of documents. This 

resulted in with training values for each of the sentence pairs that I then could use in 

training. Training data for the regression model was generated by marking each 

aligned  English sentence pair as similar, and all other sentence pairs as not similar. 

The data was run though a general linearized model to retrieve exponents used to 

merge the feature values.  

 

Table 3.1 and Table 3.2 shows the results from training feature merging models for 

both token and Identity Finder features, and just the token feature alone with 

different translations mechanisms. The tokens are translated using either lookup 

through the Buck Walter morphological analyzer, lookup in a learned probabilistic 

dictionary, or both. When using both resources for translation, English primitives are 

first looked up using the Buck Walter. 

 

 

Table 3.1: Feature merging model training results using token and Identity Finder 

features 

 

With Buck Walter + Probabilistic, Probabilistic, and Buck Walter translation. 

system, and a link between the  primitive and the target English translation are made. 

The English primitives are then looked up in the probabilistic dictionary, and 

additional links from the probabilistic dictionary are added. For different thresholds, 

the Precision and Recall training results for the similar  class is given. During 

training, a test sentence pair is assigned a similar value if the similarity of the pair is 
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above the threshold. The best results are obtained using both token and Identity 

Finder features, using the combination of probabilistic and Buck Walter translation 

When using both the Token and Identity  Finder features, in all cases using 

Probabilistic translation combined with Buck Walter translation resulted in improved 

precision and recall at every threshold over using just Probabilistic translation alone. 

The difference is statistically significant at the p = 0:05 value for both precision and 

recall using the paired Wilcoxon signed rank test. Similarly, Probabilistic translation 

alone outperforms using Buck Walter translation alone on the training data at every 

threshold, and is statistically significant at p = 0:01 for both precision and recall. 

Combining Buck Walter and probabilistic translation. 

 

 

 
 

 Table 3.2: Feature merging model training results for token feature using Buck    

Walter and Probabilistic, Probabilistic, and Buck Walter translation. 

 

Improves both precision and recall for training. Note that the source data used to 

learn the probabilities for the dictionary is different from the training data used here; 

the dictionary used data from 2001-2004 from the Ummah Press Service, while this 

training data is from 2001 from the AFP and Xinhua news services. The general 

genre and time frames do overlap, which means the dictionary is probably a good 

match for the data used. Using only the token feature, using both Probabilistic 

translation with Buck Walter translation outperformed using just Probabilistic 

translation alone for every threshold except for 0.6 in terms of precision, but always 

outperformed Probabilistic translation alone in terms of recall.  

 

Probabilistic translation alone always outperformed Buck Walter translation alone. 

The differences in precision and recall are all statistically significantly greater at p = 

0:05 using the paired Wilcoxon test. In either case, using both Probabilistic and Buck 

Walter translation provides the best performance. For all but one threshold (0.8) 

using the combination of the token and BBN Identity Finder features performs as 
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well or better than using tokens alone. The addition of the Identity Finder feature 

statistically signify frequently improved precision and recall over the token feature 

alone using probabilistic and Buck Walter translation according to the paired 

Wilcoxon test (p = 0:0593 for precision, p = 0:0099 for recall.) Adding more 

linguistically informed features has helped performance when looking at the training 

data, and as shown in section 4.2, also improves results when evaluated against 

unseen data. 

 

3.4.5 Training Results 
 

The learned model was added to similarity finder, was re-run over the training data. 

Each  sentence was compared to the most similar English sentence as predicted by 

similarity finder89.00% of the sentences were correctly mapped back to their aligned 

counterpart. The average similarity of the most similar English sentence was 35.98%, 

but this rose to 3.51% when looking at only correctly mapped sentences (vs. 23.6% 

for incorrectly mapped sentences.) Figure 3.5 shows three examples of similar  

English sentences found by similarity finder. , machine translations of the sentences 

are provided in the blue boxes as a convenience to the reader, however similarity 

finder only uses the  English sentences to perform the similarity computation. 

 

3.5.1 Extracting article text from web pages 
 

In order to work with similarity finder in similar languages, I needed to find a natural 

source of English and non-English news documents to work with. One source for 

such documents is the online news crawling and clustering component of Columbia 

News Blaster. I investigated methods for crawling and extracting article text in 

multiple languages, as well as clustering English and non-English text within the 

News Blaster framework. The following section discusses a new system Dave Elson 

and I developed for extracting the text of an article from crawled web pages that uses 

machine learning to enable support for English  languages. One of the problems with 

using web news as a corpus is that we must be able to extract the \article text" from 

web pages in multiple languages. The article text is the portion of a web page that 

contains the actual news content of the page, as opposed to site navigation links, ads, 

layout information, etc. For example, a recent web page from the New York Times 

consisted of a total of 0,61 bytes, but the actual article text of the web page was only 

6,88 bytes. The remaining 60k was extraneous formatting information, navigation 

links, advertisements, and so on. 

 

I solved this problem by incorporating a new article extraction module that uses 

machine learning techniques to identify the article text. The new article extraction 

module parses HTML into blocks of text based on HTML markup and computes a 

set of features for each text block. 34 features are computed for each text block, 

based on simple surface characteristics of the text. For example, I use features such 

as the percentage of text that is punctuation, the number of HTML links in the block, 

the percentage of question marks, the number of characters in the text block, and so 

on. While the features are relatively language independent in that they can be 
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computed for any language, the values they take on for a particular language, or web 

site, vary. 

 

3.5.2 Using simple document translation for lingual clustering 
 

Once a suitable set of articles can be extracted from the web into text, it is necessary 

to cluster the articles into topics for use with similarity finder and lingual multi 

document summarization. The document clustering system that used in Columbia 

News- Blaster [10] has been trained on, and extensively tested with English. While it 

can cluster documents in other languages, our goal is to generate clusters with 

documents from English languages, so a baseline approach is to translate all non-

English documents into English, and then cluster the translated documents. I take this 

approach, and further use different translation methods for clustering and 

summarization. 

 

Since many documents are clustered, I use simple and fast techniques for glossing 

the input articles when possible. I have developed simple dictionary lookup glossing 

systems. While word sense disambiguation is important, my first implementations of 

glossing systems do not perform word sense disambiguation or other sophisticated 

disambiguation techniques. Documents that are used in a cluster are later translated 

with a higher-quality method (currently, an interface to SYSTRAN's system via 

Altavista's babel) For languages where we do not have a simple translation 

mechanism available, web interface to the SYSTRAN translation engine. The 

translated documents are then clustered as in the monolingual English version of 

NewsBlaster. 

 

3.5. Lingual Clustering Evaluation 
 

I supervised a Russian-bilingual project student, Larry Leftin, who applied my fast 

glossing translation system to Russian documents. We have performed an evaluation 

of the lingual clustering component using glossing techniques as discussed in Section 

3.5.2 over Russian text by manually examining clusters from a small test data set. 

The data set is a crawl over news from two Russian news sites 

(http://www.izvestia.ru/, http://www.mn.ru/), and English news from CNN.com, for 

a total of 880 articles. After translating the Russian documents with our glossing 

system and clustering the English and translated Russian documents, 448 clusters are 

produced. Of those,  clusters contained documents in both English and Russian. A 

hand-examination of the clusters showed that they were all high quality clusters  i.e., 

the topics of the English documents were tightly related to the topics of the Russian 

translated documents. We also compared to clustering runs using documents with 

slightly different translation processes (various methods of trying to emphasize 

proper nouns in the translated Russian and original English text) but these variations 

on the translation did not perform as well as the original glossing scheme. We have 

not approached the task of looking at recall of the clustering, since even with this 

small data set, it would not be practical to examine the entire set by hand. The small 

number of lingual clusters does not sound unreasonable, since even with English-

only runs of Columbia NewsBlaster, only a small number of clusters result from a 
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large data set (from out of 2,000 - 3,000 input documents, generally only 300 clusters 

altering requirements.) 

 

Automated lingual article extraction and lingual document clustering is now a 

functional part of the lingual version of Columbia NewsBlaster. In the next section, I 

will detail similarity finder performance over Japanese training data collected from 

the web. 

 

3.6 similarity finder Conclusion 
 

In this chapter I presented similarity finder, a system for computing text similarity 

between text units (sentences, in this case) in languages. Similarity finder has been 

implemented to work with English. For English and, different translation 

mechanisms, feature sets, and feature merging models were explored, with the best 

performing combination yielding precision of 86% and recall of 50% at a threshold 

of 0. over the training data. Continuing with the work first started in the English 

version of similarity finder, computes overall similarity on the basis of multiple 

feature values defined over linguistically motivated primitive types instead of just a 

single function of shared terms. Similarity finder makes it easy to add new primitives 

for different languages, and allows for run-time definition of the set of features to use 

for similarity computation. The ease with which new primitives and features can be 

added allows for easy experimentation with features for similarity across languages. 

Existing natural language processing resources can easily be integrated into 

similarity finder, as shown by the integration of the English version of BBN's 

Identity Finder for a named entity primitive in similarity finder. 

 

Similarity finder uses translation at the level of the primitives to for cross-lingual 

similarity computation. Performing translation at this level means that a full machine 

translation system for a language pair is not required. For languages that do not have 

a large amount of available tools available, similarity finder can be used in 

conjunction with a simple token based primitive extractor and a translation lexicon 

learned from a parallel corpus and still generate high precision output. Similarity 

finder is easily ported to other languages, and a strong implementation has been 

developed for  English. Similarity finder to find similar sentences in  English text, 

and compares to performance using similarity finder with machine translated text. 

Presents two summarization systems that use text similarity in novel applications of 

lingual multi-document summarization. 
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                             CHAPTER 4 

 

 
 

SUMMARIZATION VIA SIMILARITY 

 
 

With the large amount of text available on the web, summarization has become an 

important tool for managing information overload. While multi-document 

summarization of English text has become more common, less attention has been 

paid to producing English summaries of foreign language text. Yet, use of foreign 

language on the web is growing rapidly [10], and with growing globalization many 

news events are covered by many countries. In the face of the language diversity 

available on the web, it is more important to investigate techniques that can provide a 

summary of documents that end-users are not able to read. As much of the news that 

is internationally reported is also available in English, making use of the English 

documents for summarization in a lingual environment has become possible. 

 

I have implemented two summarization systems: 

  

� A system that builds a summary of the foreign language text, and 

replaces sentence in the summary with a similar sentence from the 

English text when possible. 

� a system that uses sentence similarity to cluster all sentences, 

identifying sentence topics that only occur in one language or the 

other, and those which are present in both document sources. 

 

 

The first system uses similar English text to improve the readability and 

comprehensibility of a summary primarily over the foreign language documents, 

while the second system indicates similarities and differences in the content between 

the foreign language and English text. The first system is tested using machine 

translated text, and English similarity finder to compute similarity. The second 

system is tested using machine translated text, and over translated text with similarity 

computed by similarity finder. Section 5.3 focuses on using text similarity to replace 

machine translated sentences with similar sentences from English text, while section 

5.4 presents a system that uses sentence similarity to cluster sentences and present 

the information that differs between the English and foreign language documents. 
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4.1 Related work in sentence similar text document summarization 
 

Previous work in lingual document summarization, such as the SUMMARIST 

system [15] extracts sentences from documents in a variety of languages, and 

translates the resulting summary. Chen and Lin [4] describe a system that combines 

multiple monolingual news clustering components, a lingual news clustering 

component, and news summarization component. Their system clusters news in each 

language into topics, then the lingual clustering component relates the clusters that 

are similar across languages. A summary is generated for each language based on 

scores from counts of terms from both languages. The system has been implemented 

for  English, and an evaluation over six topics is presented. Our system differs by 

explicitly generating a summary in English using selection criteria from the non-

English text. 

 

Other work that use similarity-based approaches to summarization, such as the 

MEAD document summarization system [29] are related in their use of similarity to 

guide selection, but our work is original in using text originally from one language to 

guide selection exclusively on English text. The General summarization system [3] 

uses text similarity to identify \themes" in a document, and then builds a summary 

sentence from a theme by combining information from the similar sentences. Our 

application of text similarity is to improve grammaticality and comprehensibility by 

selecting similar content from English text, not to use similarity to identify important 

content, or merge information from similar sentences. 

 

 

 

4.2 Summarizing Machine Translated text with Relevant English 

Text 
 

In this section I present a lingual document summarizer that takes as input a set of 

multiple documents on a particular topic, some of which are English, and some of 

which are machine translations of documents into English. The summarizer produces 

an 

 

Figure 3.2: A system suggested replacement sentence for a machine translated                 

English sentence 
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English summary of the foreign language documents. One of the problems with 

extracting sentences from the machine translated text directly is that they can be 

ungrammatical and difficult to understand. Moreover, removing context makes the 

resulting summary hard to comprehend. Figure 3.2 shows an example of an English 

sentence translated by IBM's statistical MT system from the DUC2004 corpus, and 

the English sentence that our system suggests as a replacement. I introduce a new 

method to summarize machine translated documents using text similarity to related 

English documents. The summary is built by identifying the sentences to extract 

from the translated text, and replacing the machine translated sentences from the 

summary with similar sentences from the related English text when a good 

replacement can be found. The idea is to match content in the non-English 

documents with content in the English documents, improving the grammaticality and 

comprehensibility of the text by using similar English sentences. 

 

I present different models for summarization using replacement and show their 

effectiveness in improving summarization quality. In addition to different metrics 

and thresholds for similarity, I investigate the utility of syntactic sentence 

simplification on the replacement English text, and sentence chunking on the 

machine translated English text. I performed manual evaluation of whether 

replacements of machine translated sentences by similar English sentences improve a 

summary on a sentence-by-sentence basis, as well as an evaluation of a similarity-

based summarization system using the automatic ROUGE [19] summary evaluation 

metric. I show that 68% of sentence replacements improve the resulting sum Mary, 

and that our similarity-based system outperforms a state-of-the-art document 

summarization system and first-sentence extraction baseline. 

 

4.2.1 Summarization Approach 
 

Our approach relies on first translating the input documents into English and then 

using similarity at the sentence level to identify similar sentences from the English 

documents. As long as the documents are on the same topic, this similarity based 

approach to lingual summarization is applicable. This thesis does not address the 

issue of obtaining on-topic document clusters; news clustering systems such as 

Google, or News  demonstrate that this is feasible. The system architecture is: 

 

 

1.Syntactically simplify sentences from related English documents, and possible   

chunk machine translated English sentences. 

 

2. Produce a summary of the machine translated sentences using an existing sentence 

Extraction summarization system. 

 

3. Compute similarity between the summary sentences and sentences from similar 

English documents. 

 

4. Replace English sentences from summary with English sentences for those pairs                                 

with similarity over an empirically determined threshold. 
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Since the focus of this work is not extraction-based summarization, we used an 

existing state-of-the-art document summarization system, DEMS [35], to select the 

sentences for the similarity computation process. 

 

4.2.1.1 Sentence Simplification 
 

Since it is difficult to find sentences in the related English documents containing 

exactly the same information as the translated sentences, I hypothesize that it may be 

more effective to perform similarity computation at a clause or phrase level. I ran the 

English text through sentence simplification software [37] to reduce the English 

sentence length and complexity in the hope that each simplified sentence would 

express a single concept. The sentence simplification software breaks a long sentence 

into two separate sentences by removing embedded relative clauses from a sentence, 

and making a new sentence of the removed embedded relative clause. This allows a 

more grained matching between the English sentences, without including additional 

information from long, complex sentences that is not expressed in the English 

sentence. 

 

For example, for the following English sentence- 

 

1. Had decided Iraq last Saturday halt to deal with the United Nations Special 

Commission responsible disarmament Iraqi weapons of mass destruction. One 

similar      English sentence found is: 

2. Earlier, in Oman, Sultan Qaboos reportedly told Cohen that he opposed any 

unilateral U.S. strike against Iraq, which ended its cooperation with U.N. inspectors 

on Saturday. 

That sentence simplifies to the following two sentences: 

 

2a. Earlier, in Oman, Sultan Qaboos reportedly told Cohen that he opposed any 

unilateral U.S. strike against Iraq. 

2b. Iraq ended its cooperation with U.N. inspectors on Saturday. 

 

Using sentence simplification to break down the text allows us to match sentence 2b, 

without including 2a, which was not reported in the English sentence? I examined 

using two types of sentence simplification, syntactic and syntactic with pro- noun 

resolution, and compared them to not using any sort of simplification. To limit the 

number of systems evaluated in the manual evaluation, I determined settings to use 

based on results from automated summary evaluation. In all of our experiments, 

syntactic simplification performed about 3% better on ROUGE scores than 

simplification with pronoun resolution, or not performing any simplification. 

Simplification with pronoun resolution did not always beat un simplified text, 

possibly due to errors introduced by the pronoun resolution, which has a success rate 

of approximately 0%. I present results of the system using only syntactic 

simplification. Similarly, I performed experiments for splitting the machine 

translated text. Investigated two methods for splitting English text: one tags the text 

with TTT4 and splits on verb groups, copying the previous noun group and verb 

group to the start of the next sentence. The other splits on verb groups and \and", 
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\nor", \but", \yet" and \,", without performing the copying. In both cases, sentences 

with less than 3 tokens are altered from the output. The copying method was 

approximately 3% better on the manual evaluation below, so I omit results from the 

other chunking method. 

 

4.2.1.2 Similarity Computation 
 

Text similarity between the translated and relevant text is calculated using similarity 

finder [14]. Similarity finder is a tool for clustering text based on similarity 

computed over a variety of lexical and syntactic features. The features used in 

similarity finder are the overlap of word stems, nouns, adjectives, verbs, word Net 

[22] classes, noun phrase heads, and proper nouns. Each feature is computed as the 

number of items in common between the two sentences normalized by the sentence 

length. The final similarity value is assigned via a log-linear regression model that 

combines each of the features using values learned from a corpus of news text 

manually labeled for similarity. No modifications were made to similarity finder to 

compensate for using machine translated text as input, although the machine 

translated text is quite different from the news text used to train similarity finder. 

 

4.2.1.3 System Implementation 

 
Our summarization system can be run in multiple configurations. 

 

1. Use DEMS to select English sentences, retain only sentences that have similar 

English sentences, replacing them with the single most similar English sentence. If 

the summary is too short (less than 600 bytes,) delete it, and build a new summary 

using all English  sentences, sorted by similarity to English sentences, and replacing 

each one by the single most similar English sentence. 

 

2. Use DEMS to select English sentences, replace only sentences above empirically 

determined threshold of 0.6 passing a cosine alter with similar English sentences, and 

retain non-replaced English sentences in the summary. 

 

3. Use all English  sentences, sort by decreasing similarity to English sentences, and 

replace each one by all English sentences above an empirically determined threshold 

of 0.6 that pass a cosine alter. Machine translated sentences are kept if they do not 

pass the threshold. 

 

Configuration 1 uses DEMS to select sentences, and maximizes the number of 

replacements made by re-running without DEMS if not enough similar sentences are 

found to make a large enough summary. Configuration 2 also uses DEMS to select 

sentences, but retains any machine translated sentences for which no suitable 

sentence replacements are found. Configuration 3 focuses on maximizing 

replacements by not using DEMS for selection, and builds a summary by taking the 

most similar English sentences, using only similarity to English  sentences to guide 

selection, removing any manually-constructed \intelligent" system from the selection 

task. All summaries are limited to 665 bytes since that was the size threshold that 
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was used for the DUC evaluation. An evaluation of the different configurations of 

the system using ROUGE scores is presented. 

 

4.3.2 Evaluation 
 

I performed evaluation at two levels: the sentence level to test the proposed sentence 

replacements of English sentences from similar English sentences, and the summary 

level to evaluate quality of the full summaries that include these sentence 

replacements. At the summary level, I used the automated system, ROUGE, for 

evaluation. It allowed us to make rough distinctions between different models for 

constructing the full summary. However, this would not tell us whether a particular 

English sentence was a good replacement for a translated one and thus, I used a more 

time-consuming, manual evaluation to quantify how well replacement worked. 

 

4.3.2.1 Summary level evaluation 
 

I evaluated the similarity-based summarization system using ROUGE, 5 a system for 

summary evaluation that compares system output to multiple reference summaries. I 

include results from two baseline systems: a first-sentence system, and runs of the 

DEMS system without replacement. 

 

The first-sentence summarization baseline takes the first-sentence from each 

document in the set until the maximum of 665 bytes is reached. If the first-sentence 

was already included from each document in the set, the second sentence from each 

document is included in the summary, and so on. Two baseline summaries were 

generated; one for the relevant English documents only, and one for the IBM 

translated documents alone. The IBM translation baselines give us an idea of scores 

for summaries drawn from the same content as the reference summaries, while the 

relevant English baselines tell us how well summaries generated without any 

knowledge from the English text score. Our similarity-based system was run with 

simplified English sentences and full machine translated English sentences. 

 

4.3.2.2 Summary level evaluation results 
 

Table 3.3 lists the results using the ROUGE-L evaluation metric along with the 

results of the four baseline runs. The ROUGE-L score is a longest common substring 

score from the ROUGE system, which rates summaries based on n-gram overlap 

between the system summary and multiple reference summaries. Evaluations with 

ROUGE in the past have demonstrated that the score often fails to show statistical 

significance between scores for evaluated systems. In DUC04 on the lingual system 

task, the 95% confidence interval 
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                                   Table 3.3: Summary evaluation results. 

 

split the 11 participating systems into two main groups; the bottom group containing 

three systems and the top group containing everyone else. One could argue for a third 

group containing the top system only, which was statistically significantly better than 

the bottom six systems when taking the 95% confidence interval into effect. It is not 

a surprise, then, that the results for the three versions of our system and the baselines 

also fall within the 95% confidence interval. As the only automated method for 

summarization, ROUGE is often, nonetheless, used to roughly rank different 

approaches. Even if the similarity-based systems do not beat the baselines by 

statistically significant margins, replacing the machine translated text with English 

text does improve the readability of the summary. The similarity-based 

summarization system in configuration 1 performs better than all the baselines, 

whether over the related English text, or the IBM machine translated text. By out-

performing the first sentence baseline and DEMS on the machine translated text, I 

infer that the similarity system is able to choose sentences from the related English 

text that are relevant to the content summarized by the humans who read the manual 

translations of the English text. In contrast, simply running first sentence extraction 

and DEMS on the related English text does not perform as well; using the machine 

translated text to guide selection of related English sentences gives an improvement 

in performance over the related English baselines. The similarity-based system even 

outperforms DEMS when run over the manual translations. 

 

Of the three system configurations, the first performs the best. In this evaluation, this 

configuration builds a summary using all English sentences and replaces them with 

the most similar English sentence because DEMS selection resulted in too few 

sentences. Using DEMS for selection in configuration 2 resulted in summaries 

containing mostly machine translated text, since few sentences pass the required 

threshold level and alters, but did not perform as well as the DEMS baseline since 

sentences were sorted by similarity, resulting in different sentences in the truncated 
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summary. Configuration 3 also contained some machine translated sentences, and 

did not perform as well as configuration 1, which only contained English text. 

 

In Section 5.3, I presented a summarization system that summarizes machine 

translated text using the English sentences to guide selection of English sentences 

from a set of related articles. Syntactic sentence simplification on the related English 

text improves overall summarizer performance, and a hand evaluation of the 

sentence replacements show that 68% of the replacements improve the summary. 

 

The results from the ROUGE metric show that the similarity based summarization 

approach outperform DEMS and the first-sentence extraction baseline. It is 

interesting that a state-of-the-art summarization system run over the relevant English 

articles performs worse than the similarity-based summarization systems run over the 

same data. This clearly demonstrates that the similarity-based selection system 

driven by the machine translations is able to select the good sentences from the 

relevant text. 

 

In the process of performing our manual evaluation, often there was different content 

in the English texts, and finding similar content for some subset of the sentences was 

just not possible. This leads us to believe that a more useful approach to 

summarization for data of this kind is to separate out what is similar between the two 

document sources, and what is unique to each document source. Thus, I expand on 

the idea of summarizing two different sets of documents by looking at not just what 

is similar between them, but also what is different. Instead of just using the similarity 

values as is done here, I cluster the sentences, and identify sentence clusters that 

contain information exclusive to the English documents, information exclusive to the 

English documents, and information that is similar between the two. The clusters 

with similar sentences can be summarized using the approach in this thesis. For the 

other clusters, I am working on an approach to generate indicative summaries that 

point out the differences. Given that summaries that point out both similarities and 

differences are quite different from the model summaries currently used in DUC, I 

also develop strategies to evaluate these summaries, presented in Section 5.4.2.1. 

 

4.4 Summarization that indicates similarities and differences in 

content 

 
While Section 5.3 focused on using text similarity to find similar sentences and 

replacing them when possible, in many cases the documents from the two languages 

contain different information. The second model of summarization uses text 

similarity and sentence clustering to indicate both similar content between the two 

sources and content that differs between two sources of text in different sentence. In 

this case, our system works with  English text. 

 

In this section I introduce a second summarization system, CAPS (Compare And 

contrast Program for Summarization) that uses text similarity on the input text 

documents to generate clusters of sentences across languages that are similar to each 
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other, and identifies the source language documents from which the clusters draw 

their evidence. A summary produced by CAPS identifies facts that English and 

English sources agree on as well as explicit differences between the sources. Its 

three-part summary of an event identifies information reported in English sources 

alone, information reported by  sources only, and information that appeared in both 

English and English sources. As with the work presented in Section 5.3, English text 

is first syntactically simplified, so CAPS can identify similarities and differences 

below the sentence level. 

 

In addition to using similarity metrics to identify agreements and differences among 

articles, it also uses similarity to improve the quality of the summary from mixed 

sources over plain extraction systems by selecting English phrases to replace error 

full English translations. In the following sections I first describe the CAPS 

architecture, then present the similarity metrics that I use for clustering and for 

selection of phrases for the summary. Finally, I present an evaluation of our method 

which quantities both how well CAPS identifies content unique to or shared between 

different sources, and how well CAPS summaries capture important information. 

Our evaluation features the use of an automatic scoring mechanism that computes 

agreement in content units between pyramid representations [27] of the articles, 

separated by source. As before, I use English documents from the DUC 2004 lingual 

corpus [28] for the experiments here. 

 

4.4.1 System Architecture 
 

The input to the CAPS Summarizer is two sets of documents on an event. The input 

to CAPS can be: 

 

� a set of un translated  documents with a set of English documents, or 

� A set of manual or machine translations of documents with a set of 

English documents. 

 

When using English documents CAPS uses similarity finder to compute text 

similarity, or the English version of similarity finder when using manual or machine 

translations of the documents to compute the text similarity measure. As with 

replacement-based summarization, either syntactic sentence simplification software 

can be used to simplify the English text, or the original un simplified English text can 

be used. Figure 3.3 shows the CAPS system architecture, with 8 main phases: text 

simplification, similarity computation, clustering, cluster pruning, cluster language 

identification, cluster ranking, representative sentence selection, and summary 

generation. CAPS  determine similarities and differences across sources by 

computing a similarity metric between each pair of simplified sentences. Clustering 

by this metric allows the identification of all sentence fragments that say roughly the 

same thing. As shown in Figure 3.3, CAPS first simplifies the input English 

sentences. It does not simplify the translated  sentences because these sentences are 

often ungrammatical and it is difficult to break them into meaningful chunks. CAPS 
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then computes similarity between each pair of simplified sentences and cluster all 

sentences based on the resulting values. 

 

 

  

 

Figure 3.3: CAPS System Architecture 

Next, sentence clusters are partitioned by source, resulting in multiple clusters of 

similar sentences from English sources, multiple clusters of sentences from English 

sources, and multiple clusters of sentences from English sources. Finally, I rank the 

sentences in each source partition using a TF*IDF score [32]. The ranking 

determines which clusters contribute to the summary (clusters below a threshold are 

not included) as well as the ordering of sentences. For each cluster, we extract are 

representative sentence (note that this may be only a portion of an input sentence) to 

form the summary. In this section, I describe each of these stages in more detail. 

 

4.4.1.1 Sentence Simplification to Improve Clustering 

 
As with the summarization system presented in Section 3.3, it is possible to 

performing syntactic sentence simplification on the input English text. I have 

previously performed experiments using both perform syntactic simplification and 
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not using simplification on the input English text, and show the results in Section 

5.3.2.1. I opt to use syntactic sentence simplification with this system as well because 

it allows one to measure similarity at grain than would otherwise be possible. I use a 

sentence simplification system developed at Cambridge University [37] for the task. 

The generated summary often includes only a portion of the simplified sentence, thus 

saving space and improving accuracy. I use syntactic sentence simplification only 

instead of using syntactic simplification with pronoun resolution. The pronoun 

resolution phase included in the software sometimes makes anaphoric reference 

resolution errors, resulting in incorrect re-wordings of the text. 

 

4.4.1.2 Text Similarity Computation 
 

Text similarity between English sentences is computed using similarity finder, a 

program I developed which uses simple feature identification and translation at word 

and phrase levels to generate similarity scores between sentences across and within 

languages. Section 3.4 details the English version of similarity finder used in this 

work. Text similarity between manual and machine translated English documents 

and English is computed with similarity finder, an English-specific program for text 

similarity computation that similarity finder was modeled after. Similarity finder for 

English is presented in Chapter 2. In addition, I present a third baseline approach 

using the cosine distance for text similarity computation. 

 

4.4.1.3 Sentence clustering and pruning 
 

Sentence clustering uses the same clustering component described in Chapters 2 and 

3. Each cluster represents a fact which can be added to the summary; each sentence 

in the generated summary corresponds to a single cluster. Since every sentence must 

be included in some cluster, individual clusters often contain some sentences that are 

not highly similar to others in the cluster. To ensure that our clusters contain 

sentences that are truly similar, I implemented a cluster pruning stage that removes 

sentences that are not very similar to other sentences in the cluster. I implemented the 

same cluster pruning algorithm described in [31]. This pruning step ensures that all 

sentences in a sentence cluster are similar to every other sentence in the cluster with 

a similarity above a given similarity threshold. I illustrate the procedure with the 

following example. For the cluster with these initial sentences: 

 

P13 Sana'a 12-29 (AFP) - A Yemeni security official reported that Yemeni security 

forces killed three of the Western hostages who were held in Yemen, two Brits and 

an American, and managed to free 13 others when they attacked the place where they 

were detained. P36 London 12-29 (AFP) - British Foreign Secretary Robin Cook 

announced this evening, Tuesday, that the four Western hostages who were killed 

today in Yemen are three Brits and one Australian. P41 London 12-29 (AFP) - 

British Prime Minister Tony Blair announced today, Tuesday, that he was "shocked 

and hurried" about the killing of four Western hostages in Yemen, including at least 

three Brits. P51 London 12-30 (AFP) - One of the surviving hostages in Yemen, 

David Holmes, announced in a telephone call conducted with him from London by 

Agence France Presse that the hostages who died Tuesday in Yemen at the hands of 
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their kidnappers were killed during the attack by policemen, and not before the attack 

as Yemeni police asserted. P52 Holmes (64 years), who is still in Aden, regarded 

"that all reports that said that the criminals attacked the hostages (before the raid by 

security forces) do not agree with the developments of events. When the criminals 

found themselves threatened and realized that they may be defeated, they wanted to 

kill the hostages."P53 Aden's Security Chief, Brigadier General Mohammad Saleh 

Tareeq, had announced today, Wednesday, in the presence of some survivors who 

refused to speak to the press that "the hostage rescue operation started after the gang 

began killing the hostages, whereas they first killed three of the British hostages, 

which then forced the security forces to storm their location to prevent more 

bloodshed, and was consequently able to free the rest of the hostages." P58 In 

Yemen, three hostages were killed. P62 Authorities say it was the first time hostages 

had been killed in Yemen. 

 

 

Based on the similarity values between the sentences in the cluster, those sentences 

that have values lower than the threshold are removed. In this example, sentences 

P51, P52, and P62 need to be removed. The final cluster is then: 

 

P13 Sana'a 12-29 (AFP) - A Yemeni security official reported that Yemeni security 

forces killed three of the Western hostages who were held in Yemen, two Brits and 

an American, and managed to free 13 others when they attacked the place where they 

were detained. P36 London 12-29 (AFP) - British Foreign Secretary Robin Cook 

announced this evening, Tuesday, that the four Western hostages who were killed 

today in Yemen are three Brits and one Australian. P41 London 12-29 (AFP) - 

British Prime Minister Tony Blair announced today, Tuesday, that he was "shocked 

and hurried" about the killing of four Western hostages in Yemen, including at least 

three Brits. P53 Aden's Security Chief, Brigadier General Mohammad SalehTareeq, 

had announced today, Wednesday, in the presence of some survivors who refused to 

speak to the press that "the hostage rescue operation started after the gang began 

killing the hostages, whereas they first killed three of the British hostages, which 

then forced the security forces to storm their location to prevent more bloodshed, and 

was consequently able to free the rest of the hostages." P58 In Yemen, three hostages 

were killed. 

 

The resulting cluster contains sentences that are much more similar to each other, 

which is important for my summarization strategy since I select a representative 

sentence from each cluster that is included in the summary. I do not want to make 

sentences that are not representative of the cluster available for inclusion in the 

summary. 

 

4.4.1.4 Identifying cluster similar sentence  
 

The final summary that I generate is in three parts: 

�  sentences available only in the  similar text  documents 

�  sentences available only in the English documents 

� sentences available in both the similar text  and English documents 
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After producing the sentence clusters, I partition them according to the sentence of 

the sentences in the cluster: English only. This ordering is important because it 

allows us to identify similar concepts across languages, and then partition them into 

concepts that are different: those that are unique to the documents, and the English 

documents, and concepts that are supported by English documents.  

 

Note that these clusters are not known before-hand and are data driven, coming from 

the text similarity values directly. 

 

4.4.1.5 Ranking clusters 
 

Once the clusters are partitioned by language, CAPS must determine which clusters 

are most important and should be included in the summary. Typically, there will be 

many more clusters than cannot in a single summary; average input data set size is 

263 words, with an average of 4050 words in clusters, and I am testing with 800 

word summaries, 10% of the original text. In the default configuration, CAPS uses 

TF*IDF to rank the clusters; those clusters that contain words that are most unique to 

the current set of input documents are likely to present new, important information. 

For each of the three types of sentence clusters, English, the clusters are ranked 

according to a TF*IDF score [32].  

 

The TF*IDF score for a cluster is the sum of all the term frequencies in the sentences 

in the cluster multiplied by the inverse document frequency of the terms to discount 

frequently occurring terms, normalized by the number of terms in the cluster. The 

inverse document frequencies are computed from a large corpus of AP and Reuter’s 

news. CAPS have two other measures for ranking clusters: the number of unique 

sentences in each cluster, and the number of unique sentences in a cluster weighted 

by the TF*IDF score of the cluster. Experimentation over a single test document set 

showed that the TF*IDF score performed best of the three, and results from this 

thesis use that cluster ranking method. 

 

When using A text in the input and text similarity computation phases, the text is 

translated into English after the clustering phase. TF*IDF counts are computed over 

the machine translated  text. This is done because the ranking of clusters has to be 

done over, English, and mixed clusters, which presents a problem: how to rank the  

mixed clusters? For only clusters, a TF*IDF approach using IDF values from a large 

English corpus could be used, but it is unclear if direct application of TF*IDF to 

clusters with both languages and different IDF values for each languages would be 

applicable. As the English sentences need to be translated for presentation in an 

English summary anyway, and many of the sentences have been dropped through the 

clustering and pruning process, machine translation is performed at this step, and 

clusters are ranked with the machine translated versions of the sentences. 

 

 

 



 

 

M.Tech.(C.S.) Thesis by Shivam Maurya Page 55 

 

4.4.1.6 Sentence selection 
 

The cluster ranking phase determines the order in which clusters should be included 

in the summary. Each cluster contains several (possibly simplified) sentences, but 

only one of these is selected to represent the cluster in the summary. 

 

There are three methods implemented to select a specific sentence to represent the 

cluster: 

 

1. The sentence most similar to all other sentences based on the computed similarity 

values. 

2. A TF*IDF based ranking method that selects a sentence with the highest TF*IDF 

score. 

3. A method that constructs a \centroid" sentence in a vector space model, and selects 

the most similar sentence to the centroid To compute a TF*IDF score for clusters 

with text in multiple languages, one must have a (preferably large) corpus to derive 

IDF values for terms in the respective languages. Experimentation over a test set 

showed that the first method performed best, so that is the method used in these 

experiments. 

 

Only the set of unique sentences are evaluated for each cluster. In this sort of task, 

many of the input documents repeat text verbatim, as the documents are based on the 

same newswire (Associated Press, Reuters, etc.) report, or are updated versions of an 

earlier report. In order to avoid giving undue weight to a sentence that is repeated 

multiple times in a cluster, the unique sentences in each cluster are first identified. 

Unique sentences are identified using a simple hash function, removing leading and 

trailing white space. 

 

Similarity based selection: 
 

To select a sentence based on the text similarity values, first the set of unique 

sentences is determined as described above. For each unique sentence in the cluster, 

its average similarity to every other unique sentence in the cluster is computed. The 

unique sentence with the highest average similarity is then chosen to represent the 

cluster. 

 

TF*IDF based selection: 
 

Starting with the set of unique sentences, each sentence is scored using the same 

TF*IDF measure used for cluster ranking (see Section 5.4.1.5.) The frequency of 

each term in the sentence is computed, multiplied by the inverse document frequency 

for the term, and the score for the sentence is normalized by sentence length. The 

unique sentence with the highest TF*IDF score is selected to represent the cluster. 
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Centroid sentence selection:  
 

The centroid measure for sentence selection first builds a simple vector-space model 

for all the unique sentences, and a model for the centroid sentence. The centroid 

sentence model is built by adding in the terms from all of the unique sentences in the 

cluster. The cosine distance between each unique sentence and the centroid sentence 

is computed, and the closest unique sentence is chosen to represent the cluster. 

 

4.4.1. Summary generation 

 

 

 
 

                                                 3.4 Summary generation 

 

Once the clusters are ranked and a sentence has been selected to represent each 

cluster, the main remaining issue is how many sentences to select for each partition 

in English. There are two parameters that control summary generation: total 

summary word limit, and the number of sentences for each of the three partitions. 

The system takes sentences in proportions equal to the relative partition sizes. For 

example, if CAPS generates similar clusters, 24 English clusters, , then the ratio of 

sentences from each partition is  4 English. The smallest partition size is divided 

through the 3 partitions to determine the ratio. The total word count is divided among 

partitions using this ratio. 
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There are some measures which quantify the quality of summaries produced. It is 

classified into two types. 

� Intrinsic evaluation is a method which measures the quality of the summary 

as output. 

� Extrinsic evaluation is a method which measures the quality of output 

summary in the form of its assistance in another task. 

 

Implementation 

A network in general represents concepts as nodes and links between concepts as 

relations with weights indicating strength of the relations. The hidden or latent 

structure underlying raw data, a fully connected network, can be uncovered by 

preserving only critical links. The aim of a scaling algorithm is to prune a dense 

network in order to reveal the latent structure underlying the data which is not visible 

in the raw data. Such scaling is obtained by generating an induced sub graph. There 

are two link-reduction approaches: threshold-based and topology-based. In threshold-

based approach elimination of a link is solely decided depending upon whether its 

weight exceeds some threshold. On the other hand, a topology-based approach 

eliminates a link considering topological properties of the network. Therefore a 

topology-based approach preserves intrinsic network properties reliably. We have 

used a threshold based approach with a threshold of 0.04 to discard branches among 

nodes that similarity less than 0.04. 
 
 

 

Figure 3.5: Scaled network graph with threshold of 0.04. 
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Feature Score and rank of the all sentences 

 
All the sentences are ranked by calculating various feature score for all sentences and 

according to the compression rate they selected for inclusion in summary in 

descending order of their rank in the order of their appearance. 

 

 
 

Table no 3.4 Feature Score and rank of the all sentences 

 

 

4.4.2 Evaluation 
 

The most common method to date for evaluating summaries is to compare 

automatically generated summaries against model summaries written by humans for 

the same input set Using different methods of comparison (e.g., [19], [28], [30]). 

Since there is no Corpus of model summaries that contrast differences between 

sources; I developed a new evaluation methodology that could answer two questions: 

 

� Does the approach partition the information correctly? That is, are the facts 

identified for inclusion in the similar partition actually unique to only the 

documents? If our similarity matching is incorrect, it may miss a match of 

facts across language sources. 

� Does the 3-part summary contain important information that should be 

included, regardless of source? 
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I use Summary Content Units (SCUs) [27] to characterize the content of the 

documents and the Pyramid method to make comparisons. The evaluation 

features four main parts: manual annotation of all input documents and the 

model summaries used in DUC to identify the content units, automatic 

construction of four pyramids of SCUs from the annotation (one for  English, 

and mixed language SCUs and one for the entire document set regardless of 

language), comparison of the three partitions of system identified clusters 

against the source specific pyramids to answer question 1 above, and 

comparison of the facts in the 3-part summary against the full pyramid to 

answer question 2. 

 

4.4.2.1 SCU Annotation 
 

In the summarization experiments, I needed to come up with an evaluation 

methodology that can take into account summaries that indicate differences in 

information content between documents from different sentence. To do this, I first 

need to characterize the content of the documents in English, and determine what 

information is contained in both document sets, and what is exclusive to one set or 

the other. I have chosen to use Summary Content Units (SCUs) [27] to characterize 

the content of the documents, and evaluate the summaries output by the system. 

 

The goal of SCU annotation is to identify sub-sentential content units that exist in the 

input documents. These SCUs are the facts that will serve as the basis for all 

comparisons. The SCU annotation aims at highlighting information the documents 

agree on. An SCU consists of a label and contributors. The label is a concise English 

sentence that states the semantic meaning of the content unit. The contributors are 

snippet(s) of text coming from the summaries that show the wording used in a 

specific summary to express the label. It is possible for an SCU to have a single 

contributor, in the case when only one of the analyzed summaries expresses the label 

of the SCU. 

 

 

4.4.2.2   Characterizing  English content by SCUs 
 

This section deals with how the content differs from the English documents in the 

sets. Appendix A details the annotation process applied to the DUC sets. The and 10 

English documents, as well as 4 human-written summaries for each set were marked 

by annotators as described to arrive at one large content pyramid for all 24 

\documents" in the set. The large content pyramid was then automatically broken 

down into language-specific pyramids based on the language of the contributors in 

each SCU. An SCU that contains only contributors from English documents goes 

into the English pyramid, one that only has English contributors goes into the 

English pyramid, and SCUs that contain contributors from English documents are 

placed in the mixed pyramid. 

 

Pyramid, while the Contributors column lists the total number of contributors for the 

set. Many SCUs have multiple contributors, with some SCUs having more than 30 
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contributors for a single SCU. The sets vary in terms of distribution of SCUs 

between the languages, but in general the English pyramid contains the most SCUs. 

There are two sets for each of mixed that both contain the largest number of SCUs. 

In six of the ten sets, the size of the mixed pyramid is greater than the size of the 

English pyramid. The partitioning of the manually annotated pyramids show that the 

majority of the time the English language documents more unique information than 

the English documents, but there is still information that is only reported in the 

documents and that has support from English documents. 

 

4.4.2.3 Evaluating language partitions with SCUs 
 

Once the SCU pyramids for a document set are created, they can be used to 

characterize the content of the English documents. The SCU pyramids reveal the 

information in each document set, and the weights of the SCUs indicate how 

frequently a particular SCU was mentioned in the documents. In general, more 

highly weighted SCUs indicate information that should be included in a summary. 

This section described how I have used the three different language pyramids to 

evaluate the CAPS summarizer output, both for how well it identified content 

particular to one language , and how well it chooses important content to include in 

the summary. 

 

The following example shows how SCUs are weighted based on importance of a 

concept, and how the SCUs differ by language. This example is from a set about the 

explosion of a Pam-Am jet over Lockerbie, Scotland, the top three SCUs from the 

SCU annotation broken down by similar sentence. 

 

Evaluating English clusters is done in the same manner as clusters; I collect the 

SCUs associated with each of the sentences in the cluster, and compute the SCU 

score and percentages of SCUs found in the cluster compared against the English-

only SCU pyramid. Since the system can be run with syntactically simplified English 

text, I cannot just determine the SCUs for a sentence by reading the annotation. To 

determine the SCUs for the sentence, I first identify the longest match between the 

sentence being evaluated and the originally marked documents, and then read the 

SCUs for the matching portion. Since all of the sentences that are evaluated are either 

complete sentences that have been annotated, or simplified portions of marked 

sentences, this approach worked very well. 

 

4.4.2.4 Importance evaluation 
 

The overall summary content quality is evaluated using the Pyramid method for 

summary evaluation; the full 3-part summary is scored by comparing its content to 

the SCU pyramid constructed for all documents in the set as well as the four human 

model summaries. This pyramid encodes the importance of content units in the entire 

set; important SCUs will appear at the top of the pyramid and will be assigned a 

weight that corresponds to the number of times it appears in the input documents and 

model summaries. The pyramid score is computed by counting each SCU present in 

the system generated summary, multiplied by the weight of that SCU in the gold 



 

 

M.Tech.(C.S.) Thesis by Shivam Maurya Page 61 

 

standard pyramid. The intuitive description of a pyramid score is that the summary 

receives a score ranging 0 to 1, where the score is 

 

 
 

 

The score for the summary is simply the sum of the weights of each SCU in the 

summary. The max pyramid score for the summary is the maximum score one could 

construct given the scoring pyramid and the number of SCUs in the summary. E.g., 

for a summary with  SCUs, the max score is the sum of the weights of the  biggest 

SCUs. 

 

I developed an automated technique to match summary sentences to the SCUs from 

the pyramid. For English sentences that have been syntactically simplified, I use a 

longest common substring matching algorithm to identify the original non-simplified 

sentence in the annotated data. The SCUs annotated for the simplified section of the 

sentence are then read from the annotation data. For sentences that have not been 

simplified, the SCUs can be read directly from the annotation because they are 

identical. 

 

4.4.3 Results 

 
Most of the summarization systems developed so far is for news articles. There are 

two major reasons for this: news articles are readily available in electronic format 

and also huge amount of news articles are produced every day. One interesting 

aspect of news articles is that they are written in such a way that usually most 

important parts are at the beginning of the text. So a very simple system that takes 

the required amount of leading text produces acceptable summaries. But this makes it 

very hard to develop methods that can produce better summaries. 

 

4.4.3.1 Per-language Partition Evaluation 
 

Table 5.3 shows the percentage of SCUs in each language pyramid that have a match 

in the representative sentences for the partition. This evaluates how well the 

similarity metric clusters text for each language, and is essentially the recall of SCUs 

for each language partition. Table 5.4 lists the SCU Pyramid scores of the three 

partitions using manually translated, machine translated, and UN translated English 

documents. This evaluates the importance of the sentences included in the language 

partition by the clustering algorithm and similarity metric. Note that these 

evaluations are over the representative sentence of all clusters in each partition, and 

not just the representative sentences in the summary. 
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Extractive summary baseline 
 

 As a baseline, I examined two approaches to summarizing the just the English 

portion of the DUC 2004 English {English data, which do not take advantage of the 

unique aspect of my system to summarize the similarities and differences between 

the English documents. Using two document selection strategies, I used DEMS [35], 

a state-of-the-art extractive summarization system to summarize English documents 

from the data sets. The two document selection strategies are: 

 

1. Select all English documents and summarize. 

2. Compute the centroid document of all (translated) input English documents, and 

select individual English documents with a cosine similarity of 0.0 or greater to the 

English centroid. If fewer than two documents have a similarity of 0.0 or greater, 

take the two most similar English documents. 

 

Approach 1 is a baseline that examines how well summarizing all English documents 

performs, while approach 2 restricts the English documents to those that are similar 

to the English documents. 

 

In both cases, the non-simplified versions of the English documents, the same 

versions used to generate the gold-standard testing data, are summarized using 

DEMS. The resulting summaries are evaluated in the same manner used for the 

English summaries. The chosen representative sentence might not contain as many 

SCUs as other sentences in the cluster. 

 

4.4.3.2 Evaluating importance 
 

To evaluate how well CAPS includes important information regardless of language, I 

score the entire 3-part summary against the merged SCU Pyramid for each document 

set, and compare to two baseline systems. 

 

The baseline systems I compare to be: 

 

1. Lead sentence extraction 

2. Cosine system for similarity component for clustering component 

 

The lead sentence extraction baseline extracts the first sentence from each document 

until the summary length limit is reached, including the second, third, etc. sentences 

if there is space. The first sentence baseline is very different from the CAPS system; 

I was unable to use it in the language-partition evaluation because such a system is 

not able to identify information that is only represented by one source or the other. It 

is a common baseline used in document summarization though, and so I compare to 

it in this part of the evaluation, which is a traditional summarization evaluation. 

 

The cosine baseline uses a cosine metric for text similarity computation instead of 

Similarity finder in the CAPS framework. Table 3.5 shows average performance of 

CAPS and baseline systems over 10 different documents sets from the 2004 DUC 
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data. Since the pyramid sizes are different for different summaries, the average 

scores are computed as micro averages as before; the average is the total weight of 

all summary SCUs divided by the total of max SCU scores for each summary. 

 

 

 
Table 3.5: Average SCU pyramid scores of CAPS and baseline systems of entire 

summary. 

 

 

 

Baseline by including a representative first  sentence as well as other sentences from 

sentence clusters that contain less frequently mentioned SCUs. When using machine 

translations, scores are predictably lower than using manual translations; however, 

the CAPS system still performs better than either of the two baselines. The similarity 

component in CAPS performs much better than a less sophisticated text similarity 

technique as shown by the cosine baseline run. Interestingly, the CAPS system run 

over machine translated text even performs better than the first sentence extraction 

baseline that uses manually translated sentences. 

 

4.4.3.3 Example output 
 

The following is an example of the summary for set d1018t, a set about the kidnap 

and rescue of western hostages in Yemen. This example is taken from a run using 

manually translated and syntactically simplified English, as those runs contain the 

most understandable, making it easier to see the differences in content between the 

English sources. The summary is an 805 word summary, 54% English, and 1% 

mixed. The original documents total 4,350 words, so the summary is about 18% of 

the original document size. On average, the 800 word summaries used for these sets 
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are 10% of the size of the original document set, but d1018t is smaller than the 

average document set. 

 

4.4.4 Conclusions 
 

I have presented a system for generating English summaries of a set of documents on 

the same event, where the documents are drawn from English sources. Unlike 

previous summarization systems, CAPS explicitly identifies agreements and 

differences between English sources. It uses sentence simplification and similarity 

scores to identify when the same facts are presented in two different sentences, and 

clustering to group together all sentences that report the same facts. I presented an 

evaluation methodology to measure accuracy of CAPS partitioning of similar facts 

by language and to score the importance of the 3-part summary content. The 

evaluation shows that our similarity metric outperforms a baseline metric for 

identifying clusters based on language, and performs almost as well using machine 

translated text as manual translations for identifying important content exclusive to  

English clusters. The CAPS summarization system outperforms cosine and first 

sentence baselines using machine translated text, and almost performs as well as a 

first sentence baseline using manually translated text. 

 

 

Using Similarity finder, CAPS is able to use non-translated text as input, deferring 

translation until after sentences have been clustered, reducing the number of 

sentences that need to be translated. Using Similarity finder and translated input, 

CAPS out-performs all other methods for identifying information that is supported 

by English sources, a 0.826 micro-averaged SCU pyramid score, compared to the 

next best 0.641 using manually translated documents. 

 

Similarity finder can be quickly ported to work with other language pairs, using a 

learned probabilistic dictionary and feature merging model from a parallel corpus. 

This quick portability using only a parallel corpus allows for quickly building a 

lingual summarization system based on CAPS with Similarity finder for a language 

that does not have a large infrastructure of natural language processing tools built up. 

While this version of CAPS does use machine translation to present the English 

sentences to the user in English, presenting the original language sentences to a 

bilingual analyst is possible, CAPS is able to reduce a large number of sentences 

from multiple documents down to a much smaller number of sentences that would be 

manageable for human translators to translate. 
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CHAPTER 5 

 

 
 

CONCLUSION 

 

 
 

This thesis presents my work in lingual text similarity, and its application to 

document text summarization. In this chapter, I will present my contributions to the 

field, limitations with the work described here, and future work. 

 

5.1 Contributions 
 

This thesis presents many contributions both in the field of summarization, and 

lingual text similarity computation. These contributions include: 

 

� Development of flexible framework for experimenting with lingual text 

similarity in Similarity finder. 

 

� Linguistically motivated primitives that are computed on a per-language 

basis. 

 

� Support for computing similarity to languages with few natural language 

processing resources available by using learned bilingual translation lexicons. 

 

�  A summarization approach implemented in the CAPS system that identifies 

both Similarities and differences between documents in differ below the 

sentence level. 

 

� CAPS summarization system is applicable to any language pair for which 

machine translation systems is available, or a lingual text similarity metric 

can be computed. 

 

� Information that is supported by both languages is made easier to understand 

in the summary by selecting English sentences instead of machine translated 

English sentences for the summary. 

 

� CAPS approach is applicable even without machine translation systems 

available to summarize English documents for lingual analysts. 
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5.1.1 Linguistically motivated primitives 
 

Chapter 2 introduces previous work on English text similarity that forms the basis of 

my lingual text similarity research. This thesis presents Similarity finder, a system I 

developed that takes the ideas presented in English Similarity finder, in particular the 

idea of linguistically motivated features for comparing sentences on multiple axes. 

Using multiple axes for similarity allows the system to target more specific types of 

similarity than can be observed using just bag-of-words based approaches, and 

allows the easy integration of knowledge sources such as word Net [22] and 

grammatical information via part-of-speech based primitives. 

 

5.1.2 A flexible framework for experimenting with lingual text 

similarity 
 

Chapter 3 describes Similarity finder, my implementation of a cross-lingual text 

similarity computation system, and details my English implementation. Similarity 

finder computes similarity over text at the level of primitives, easily identifiable 

classes of text such as nouns, verbs, World Netsynsets, or named entities. The 

primitives are linguistically motivated and Similarity finder makes it easy to add and 

experiment with new primitives. Similarity across languages does not use full 

machine translation over the text, but is instead computed based on translation at the 

primitive level, where multiple translation approaches can be combined. In this work, 

I present results using two features for English similarity: token level primitives, and 

phrasal primitive’s uses named entities. 

 

Using a probabilistic dictionary is shown to improve results over using dictionary 

look up alone by increasing precision from 49.1% to 81.% when using both token 

and named entity features. The hypothesis that adding the named entity feature 

improves English could not be validated, as runs with the named entity feature did 

not statistically significantly improve precision, although it also did not statistically 

significantly reduce precision. 

 

The best performing run of Similarity finder, using probabilistic and Buck Walter 

translation with tokens and named entity features, performed nearly as well 

considering precision only as the gold standard run of manually translated English 

text using Similarity finder : 81.%, compared to the manual run of 84.6%. Using 

Similarity finder has much better precision than machine translation with English 

Similarity finder, at 66.5%, although English Similarity finder does have much better 

recall. 

 

Similarity finder is designed to make adding support for new languages easy. The 

approach taken in Similarity finder is applicable to \resource poor languages by using 

simple techniques for primitive identification, such as regular expression based 

tokenizes to identify token primitives for the language, and translation using a 

probabilistic bilingual translation lexicon learned from a parallel corpus. Similarity 

finder is able to use multiple translation methods. The best performing versions of 

Similarity finder  use both a learned probabilistic Translation lexicon, and an existing 
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translation resource (glosses from the Buck Walter morphological analyzer [Buc02].) 

For languages without many resources, if a parallel corpus is available using only the 

learned probabilistic translation lexicon results in only a minor loss in precision 

compared to using both translation resources (.% precision vs. 80.0% precision with 

both.)  

 

5.1.4 CAPS: Summarization that identifies similarities and 

differences across similar sentence   

 
In the context of multi-document summarization, the test-bed application for 

sentences, precision is more important that recall. While missing some sentences is 

acceptable since many sentences will by necessity be pruned from the summary, and 

important content is assumed to be repeated, having poor clusters with non-relevant 

sentences is not acceptable. Chapter 5 presents results from two summarization 

systems. The first improves the understandability of a summary of machine 

translated documents by conditionally replacing machine translated summary 

sentences with highly similar English sentences when one exists. The second system, 

CAPS, is a novel use of lingual text similarity to build a summary that indicates to a 

user both what information is shared between two document sources and what 

information is specific to only one source or the other.  

CAPS are evaluated using English and documents, and improve understandability by 

selecting English sentences for the summary for clusters with support from both 

English documents.  CAPS also breaks down information below the sentence level 

by applying syntactic simplification to the English text. CAPS are evaluated using 

both machine translated text with English sentences text using sentences. The 

approach using sentences performs much better than using machine translation for 

identifying content shared between the English texts. It does not, however, perform 

as well at monolingual (English) content identification. CAPS receives an average 

0.826 SCU pyramid score for mixed content with sentences, compared to 0.641 using 

manually translated English text, or 0.565 for machine translated  text. 

 

The sentences approach works very well for the cross-language English content 

identification task, validating one of the design goals of sentences. The 

summarization approach used in CAPS is also applicable to any languages for which 

a similarity metric can be computed between the English texts. Translation need only 

be performed as a presentation step; the foreign language sentences can be presented 

unmodified to bilingual users, taking advantage of a summarization strategy that 

does not require any linguistic knowledge beyond what is needed for similarity 

computation and cluster ranking. Even without translating the extracted sentences 

into English, the foreign language text can still be summarized and compared to 

English text, highlighting the similarities and differences between the two documents 

sources, which is a major contribution of this thesis. 
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5.2 Limitations 
 

In the remainder of this chapter, I will present some limitations on the work in these 

thesis problems or limitations that came to light during the development and 

evaluation of the systems presented. Some of these limitations result from design 

decisions, others from practical considerations due to difficulty of implementations, 

lack of resources, etc., but that do not represent fundamental deficiencies in the 

approach. Section 6.3 presents further work to be done in this area that could extend 

the applicability and performance of the approach. 

 

 

5.2.1 Experimentation with more English primitives 
 

The language pair investigated in this work is English. One of the contributions of 

the original English sentences work was the use of multiple linguistically-motivated 

features used for similarity computation. The same approach is taken in sentences, 

but I only investigated two primitives: tokens and named entities. I decided to not 

perform morphological analysis at an early stage, but further work with English 

similarity should investigate using morphological analysis to break the tokens down 

into simple part of speech categories to use as additional primitives. Other more 

complex primitives would be an interesting area for further research as well, such as 

normalizing time expressions out to a format that would be comparable across 

documents and language, or primitives that make use of more knowledge-heavy 

linguistic resources, such as the corpora being produced by the Inter lingual 

Annotation of Lingual Text Corpora project [25]. 

 

5.2.2 Better translation for named entities 
 

I use IBM's statistical English machine translation system to translate named entities 

when it is available; otherwise I try to match named entities based on translations of 

their component words. A much preferable approach would be to use a system such 

as Knight's transliteration system [4,7] for known named entities  many named 

entities are known not to be in any lexicons, as it is an open class of words that is 

constantly being added to by the creation of new company names, or new celebrities 

with previously translated names entering into the news. For translation of general 

noun phrases, it would be interesting to try a system specific to noun phrase 

translation, such as the one described in Philipp Kohn's thesis work [17]. The 

primitive translation phase should also include more support for fuzzy matching and 

partial matches. sentences is not trying to detect only exact translations, but similar 

sentences which would benefit from a principled investigation of fuzzy matching for 

primitives across similar sentences. 

 

5.2.3 Language feature sets and merging models 
 

As explained in Section 3.3.5 sentences uses a single feature merging model when 

combining feature similarity values into a single similarity value. Sentences should 
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be extended to allow dynamically choosing the feature merging model to use based 

on the language of the text units being compared. For two English units, it should use 

a model trained specifically over English data, for units it should use a model trained 

with English data, and for English units, it should use a model trained using English 

translation data. 

 

Currently, sentences can easily extract different sets of features for text units in 

different languages, but to simplify programming in this thesis I use the same 

features when computing similarity across similar  and within similar sentences. 

 

I have performed initial experiments combining both English training data and 

English training data in a single feature merging model, but this approach needs 

more work, since the additional English training data does not improve results for 

English similarity, and hurts English similarity results. The next section introduces 

these initial experiments. 

 

5.2.3.1 Combining English training data 
  

In Section 3.4.4 I train a model for English using the Multi-translation corpus. This 

training data is used to train a model that is used to compute similarity over English 

sentences, and English sentences. Intuitively, not having training data for the case 

and English cases would have a negative impact on similarity computation for 

English sentences. To improve the English results, I performed an experiment that 

adds the English training data to the English training data. I would also like to add 

similarity data, but I do not have a training set of similar sentences. 
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Table 3.6: Feature merging model training results using token and Identity Finder 

features With Buck Walter and probabilistic translation using English training data. 

 

Training with the English data results in lower precision and recall than training over 

just the English data. The English data includes many examples that are quite 

difficult to classify automatically; training the English version of sentences also 

results in lower scores than the English data, although due to additional features 

English version of sentences performs better than this run using only includes token 

and Identity Finder named entity features. For comparison, the model using only 

English training data has 86% precision and 50% recall at a threshold of 0., whereas 

the model with English training data has 6% precision and 13% recall. These results 

indicate that a single set of features and a single feature merging model are not 

appropriate in the lingual case. Future work should investigate adding feature sets on 

a per-language basis (this is already supported in sentences) with feature merging 

models that use the appropriate feature set merging model based on the languages of 

the sentences. 

 

5.3 Future Work 
 

This section explores other areas to be explored within the similarity finder 

framework for Lingual text similarity where I have not yet performed much work. 
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5.3.1 Further integration of statistical machine translation methods 
 

Similarity finder uses a learned probabilistic translation lexicon using an IBM model 

3 implementation. Further investigation of the integration of other statistical machine 

translation methods (distortion model, full decoder, etc.) would be useful. 

 

A distortion model might help improve similarity finder s results at finding sentences 

that are translations of each other. However, since similarity finder is searching for 

similar sentences that might not be translations of each other conveying the exact 

same information, a distortion model might impose too many restrictions, giving 

similar, but structurally different sentences, low probabilities. 

 

5.3.2 Noun Phrase Variant Identification 
 

Noun phrase variant identification is an area where better translation methods would 

help. Given a feature that extracts noun phrases in one language, to properly match to 

a noun phrase in another language would require either a translation mechanism that 

produces an N-best list with all likely variants of a noun phrase, or a noun phrase 

variation system. This section describes some related work in noun phrase variant 

recognition, and early experiments I performed with similarity finder noun phrase 

variation in French and English. Initial results were not encouraging, and I believe a 

more in-depth investigation is required to see improvement based on these 

techniques. 

 

5.3.2.1 Related Work on Noun Phrase Variation 
 

One of the early areas of this thesis work was the investigation of using noun phrase 

variation to recognize different forms of noun phrases across documents and across 

languages. Noun phrase variation was used by Bourigault 1992 [1] for the 

identification of terminological units. Maximal length noun phrases were identified 

and parsed to identify likely terminological units due to the grammatical structure of 

the noun phrases. The resulting terminological units were then passed to a human 

expert for validation. 

 

5.3.3 Sense disambiguation 
 

When translating primitives, similarity finder does not perform any sense 

disambiguation in order to determine which sense of a primitive is most appropriate 

to choose for translation. 

 

 

 

 

 

 



 

 

M.Tech.(C.S.) Thesis by Shivam Maurya Page 72 

 

REFERENCE 

 
 

[1] Didier Bourifault. Surface grammatical analysis for the extraction of 

terminological Noun phrases. In Proceedings of the 14th International Conference on 

Computational Linguistics, pages 9{981, 1992. 

 

[2] Christopher Buckley. Implementation of the smart information retrieval system. 

Technical Report Technical Report 85-686, Cornell University, Ithaca, New York, 

1985 

 

[3] Regina Barzilay, Kathy McKeown, and Michael Elhadad. Information fusion in 

the context of multi-document summarization. In Proceedings of the 3th 

Association of Computational Linguistics, Maryland, June 1999. 

 

[4] Hsin-Hsi Chen and Chuan-Jie Lin. A multilingual news summarizer. In 

Proceedings of the 18th International Conference on Computational Linguistics, 

pages 159{165, 2000. 

 

[5] William W. Cohen. Learning trees and rules with set-valued features. In 

AAAI/IAAI, Vol. 1, pages 09{16, 1996. 

 

[6] Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach 

To identifying sentence boundaries. In Proceedings of the Fifth Conference on 

Applied Natural Language Processing, March 31{April 3 199. 

 

[7] Nina Wacholder David Kirk Evans, Judith L. Klavans. Document processing 

with linkit, April 2000. 

 

[8] David A. Evans and Chengxiang Zhai. Noun-phrase analysis in unrestricted text 

for information retrieval. In Proceedings of the ACL-96, 34th Annual Meeting 

of the Association for Computational Linguistics, pages 1{24, Santa Cruz, US, 1996. 

 

[9] W.B. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures 

and Algorithms, pages 419{442. Prentice Hall, Englewood Clies, NJ, 

1992. 

 

[10] William A. Gale and Kenneth Ward Church. A program for aligning sentences 

in bilingual corpora. In Meeting of the Association for Computational Linguistics, 

pages 1{184, 1991. 

 

[11] G. Grefenstette and J. Nioche. Estimation of English and non-English language 

use on the WWW. In Proceedings of RIAO'2000, Content-Based Multimedia 

Information Access, pages 23{246, Paris, 12{14 2000. 

 



 

 

M.Tech.(C.S.) Thesis by Shivam Maurya Page 73 

 

[12] Vasileois Hatzivassiloglou, Luis Gravano, and Ankineedu Maganti. An 

investigation of linguistic features and clustering algorithms for topical document 

clustering. In Proceedings of the 23rd ACM SIGIR Conference on Research and 

Development in Information Retrieval, 2000. 

 

[13] Vasileios Hatzivassiloglou, Judith L. Klavans, and Eleazar Eskin. Detecting text 

similarity over short passages: Exploring linguistic feature combinations via machine 

learning. In Proceedings of the 1999 Joint SIGDAT Conference on Empirical 

Methods in Natural Language Processing and Very Large Corpora, pages 203{212, 

College Park, Maryland, June 1999. 

 

[14] V. Hatzivassiloglou, J. L. Klavans, M. Holcombe, R. Barzilay, M.Y. Kan, and 

K.R. McKeown. Similarity finder: A flexible clustering tool for summarization. In 

NAACL'01 Automatic Summarization Workshop, 2001. 

 

[15] E.H. Hovy and Chin-Yew Lin. Automated text summarization in summarise. In 

I. Mani and M. Maybury, editors, Advances in Automated Text Summarization, 

chapter 8. MIT Press, 1999. 

 

[16] Min-Yen Kan and Judith L. Klavans. Using librarian techniques in automatic 

text summarization for information retrieval. In Proceedings of the Joint Conference 

on Digital Libraries, pages 36{45, Portland, Oregon, USA, July 2002. 

 

[17] Philipp Kohn. Noun Phrase Translation. PhD thesis, University of Southern 

California, 2003. 

 

[18] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An 

Introduction to Cluster Analysis. Wiley, New York, 1990. 

 

[19] Chin-Yew Lin and E.H. Hovy. Automatic evaluation of summaries using co-

occurrence statistics. In Proceedings of 2003 Language Technology Conference 

(HLT-NAACL 2003), Edmonton, Canada, May 2003. 

 

[20] H.P. Luhn. The automatic creation of literature abstracts. IBM Journal of 

research and development, 2(2), 1958. 

 

[21] Daniel Marcu. From discourse structures to text summaries. In I. Mani and 

M. Maybury, editors, Proceedings of the ACL/EACL'9 Workshop on Intelligent 

Scalable Text Summarization, pages 82{88, Madrid, Spain, July 1999. 

 

[22] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and 

Katherine J. Miller. Introduction to word net: an on-line lexical database. 

International Journal of Lexicography, 4(3):235{244, 1990. 

 

[23] I. Dan Melamed. Automatic discovery of non-compositional compounds in 

parallel data. In Claire Cardie and Ralph Weischedel, editors, Proceedings of the 



 

 

M.Tech.(C.S.) Thesis by Shivam Maurya Page 74 

 

Second Conference on Empirical Methods in Natural Language Processing, pages 

9{108. Association for Computational Linguistics, Somerset, New Jersey, 199. 

 

[24] I. Dan Melamed. A portable algorithm for mapping bitext correspondence. In 

Philip R. Cohen and Wolfgang Wahlster, editors, Proceedings of the Thirty-Fifth 

Annual Meeting of the Association for Computational Linguistics  and Eighth 

Conference of the European Chapter of the Association for Computational 

Linguistics, pages 305{312, Somerset, New Jersey, 199. Association for 

Computational Linguistics. 

 

[25] Teruko Mitamura, Keith Miller, Bonnie Dorr, David Farwell, Nizar Habash, 

Stephen Helmreich, Eduard Hovy, Lori Levin, Owen Rambow, Florence Reeder, and 

Advaith Siddharthan. Semantic annotation for interlinguas representation of 

multilingual texts. In Language Resources and Evaluation Conference Work- shop: 

Beyond Named Entity Recognition - Semantic Labelling for NLP Tasks, Lisbon, 

Portugal, May 2004. 

 

[26] Peter McCullagh and John A. Nelder. Generalized Linear Models. Chapman and 

Hall, London, second edition, 1989. 

 

[27] Ani Nenkova and Rebecca Passonneau. Evaluating content selection in 

summarization: the pyramid method. In Proceedings of the Human Language 

Technology / North American chapter of the Association for Computational 

Linguistics conference, May 2004. 

 

 [28] Paul Over and J. Yen. An introduction to duc 2003 intrinsic evaluation of 

generic news text summarization systems. In Proceedings of the Document 

Understanding Conference, 2004. National Institute of Standards and Technology. 

 

 [29] Dragomir R. Radev, Hongyan Jing, and Malgorzata Budzikowska. Centroid 

based summarization of multiple documents: sentence extraction, utility-based 

evaluation and user studies. In Proceedings of ANLP/NAACL 2000 Workshop, 

pages 21{29, April 2000. 

 

[30] D Radev, S. Teufel, H. Saggion, W. Lam, J. Blitzer, H. Qi, A. Elebi, D. Liu, and 

E. Drabek. Evaluation challenges in large-scale document summarization. 

In Proceedings of the 41st Annual Meeting of the Association for Computational 

Linguistics, Sapporo, Japan, May 2003. 

 

 [31] Advaith Siddharthan, Ani Nenkova, and McKeown Kathleen. Syntactic 

simplification for improving content selection in multi-document summarization. In 

Proceedings of the 20th International Conference on Computational Linguistics 

(COLING 2004), 2004. 

 

[32] G Salton. Automatic Information Organization and Retrieval. McGraw-Hill, 

New York, 1968. 

 



 

 

M.Tech.(C.S.) Thesis by Shivam Maurya Page 75 

 

[33] Gerald Salton. The SMART retrieval system - Experiments in automatic 

document processing. Prentice-Hall, Englewood Clies, New Jersey, 191. 

 

[34] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic 

text retrieval. Information Processing and Management, 24(5):513{523, 1988. 

 

[35] Barry Schulman, Ani Nenkova, and Kathleen McKeown. Experiments in multi 

document summarization. In Proceedings of the Human Language Technology 

Conference, March 2002. 

 

[36] E. M. Voorhees. The Effectiveness and Efficiency of Agglomerative 

Hierarchical Clustering in Document Retrieval. PhD thesis, Cornell University, 1986. 

 

[37] Advaith Siddharthan. Resolving attachment and clause boundary ambiguities for 

simplifying relative clause constructs. In Proceedings of the Student Work- shop, 

40th Meeting of the Association for Computational Linguistics (ACL'02), pages 

60{65, Philadelphia, USA, 2002. 

 

[38] Nina Wacholder, David Kirk Evans, and Judith L. Klavans. Automatic 

identification and organization of index terms for interactive browsing. In 

Proceedings of The First ACM+IEEE Joint Conference on Digital Libraries, pages 

126{134, Roanoke, VA, 2001. 

 

[39] Bonnie Glover Stalls and Kevin Knight. Translating names and technical terms 

in text. In Proceedings of the 1998 COLING-ACL, Montreal, Canada, 

1998. 

 

[40] David Yarowsky. One sense per collocation. In Proceedings of the ARPA 

Human Language Technology Workshop, pages 266{21, Princeton, NJ, 1993. 

 

  

 

 



 

 

M.Tech.(C.S.) Thesis by Shivam Maurya Page 76 

 

List of Publication 

 

1. Shivam Maurya, Mohd. Saif Wajid, Ramesh Vaishya, Paper title “Sentence 

Similarity Based Text Summarization Using Clusters” . International Journal 

of Scientific and Engineering Research (IJSER) Volume 4, Issue 5(May 

2013). 

 

 

 

 

 

 

 



 

 

M.Tech.(C.S.) Thesis by Shivam Maurya Page 77 

 

CURRICULUM VITAE 

 

Career Objective                                                                                

Utilize and enhance my skills by working in professional environment. 

Knowledge Preview: 

Operating Systems  :  Windows Family 

Programming Languages :  C, JAVA 

Database   :  Oracle 10g, MySQL 

Web Skills   :  HTML, DHTML 

Office Suite   :  Microsoft Office (Word/Excel/PowerPoint) 

Educational Qualification 

Year Degree/Certificate Institute/school % 

2011-13 

M.Tech 

 (Computer Science) 

         Pursuing 

Babu Banarasi Das University,                  

Lucknow 

71.72 

Upto III 

Semester 

2011 

B.Tech 

(Computer Science) 

Bhagwant Institute of 

Technology, Muzaffarnagar, 

UPTU 

67.40 

2006 Class XII          A.D.S.V.M.,Sitapur 77.00 

2004 Class X          A.D.S.V.M.,Sitapur 75.33 

Personal Information 

 

Date of Birth                                      June /12/ 1990 

Sex /Nationality                        Male / Indian 

Languages known                      English & Hindi 

Permanent Address                967-A Thomson Ganj Sitapur , U.P. – 261001 

Mobile No.    +917376878629 

E-mail     reverentshivam@gmail.com 

 


