No. of Printed Pages: 05

Following Paper ID and Roll No. to be filled in your Answer Book.													
PA	PER	ID:2	1104	Roll No.					<	×			

BCA Examination 2018-19

(First Semester)

MATHEMATICS - I

Time: Three Hours]

[Maximum Marks: 60

Note: Attempt all questions.

SECTION-A

1. Attempt all parts of the following:

 $8 \times 1 = 8$

(a) Evaluate

$$\begin{vmatrix} \sin 20^0 & -\cos 20^0 \\ \sin 70^0 & \cos 70^0 \end{vmatrix}$$

(b) If

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$

then find A.A', where A' is transpose of A.

(c) Find the 8^{th} derivative of $4 e^{2x+5}$.

(d) Find the radius of curvature for $s = c \tan \psi$.

(e) Evaluate

$$\int_0^1 (x^3 - 1) dx$$

(f) Evaluate

$$\int_0^1 \int_0^2 (x+y) \, dx \, dy$$

(g) Find the order and degree of the differential equation

$$\left(\frac{d^3y}{dx^3}\right)^4 - 6x^2 \left(\frac{dy}{dx}\right)^5 = 0$$

(h) Solve

$$y dx + x dy = 0$$

SECTION-B

2. Attempt any two parts of the following: $2 \times 6 = 12$

(a) Solve the system of linear equations with the help of matrices:

$$x + 2y + 3z = 11$$

 $x - 2y + 3z = 3$
 $x + 2y - 3z = -1$

(b) State and verify Lagrange's mean values theorem for

$$f(x) = 2 x^2 - 7 x + 10 \text{ in } [2, 5]$$

- (c) Find the area lying between the parabola $y = 4 x x^2$ and the curve y = x.
- (d) Solve:

$$y \log y = \frac{dx}{dy} + x - \log y = 0$$

SECTION-C

Note: Attempt all questions of this section.

- 3. Attempt any two parts of the following: $5 \times 2 = 10$
 - (a) Prove that

$$\begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ac & bc & -c^2 \end{vmatrix} = 4 a^2 b^2 c^2$$

(b) Find the rank of the following matrix:

$$\begin{bmatrix} -1 & 2 & 3 & -2 \\ 2 & -5 & 1 & 2 \\ 3 & -8 & 5 & 2 \\ 5 & -12 & -1 & 6 \end{bmatrix}$$

(c) Verify that the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

satisfies its characteristic equation. Is it true for every square matrix? State the theorem that applied here.

- 4. Attempt any two parts of the following: $5 \times 2 = 10$
 - (a) Expand the function $f(x) = e^x \sin x$ by Maclaurin's theorem upto terms containing x^5 .
 - (b) Find the asymptotes of the curve

$$x^3 - y^3 - 3 a x y = 0$$

(c) Find the values of x for which function

$$f(n) = x^5 - 5 x^4 + 5 x^3 - 1$$

is maximum or minimum. Show that x = 0, the function is neither maximum nor minimum.

- 5. Attempt any two parts of the following: $5 \times 2 = 10$
 - (a) Evaluate

$$\int_0^{\pi/2} x \cdot \sin x \, dx$$

(b) Find the area of the elipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(c) Evaluate

$$\int_0^3 \int_0^2 xy (1+x+y) dx \cdot dy$$

- 6. Attempt any two parts of the following: $5 \times 2 = 10$
 - (a) Solve

$$x^2 dy + y (x + y) dx = 0$$

(b) Solve

$$x\frac{dy}{dx} + y \log y = x y e^x$$

(c) Solve

$$(y^2 e^{xy^2} + 4 x^3) dx + (2 x y e^{xy^2} - 3 y^2) dy = 0$$

HHH

•