S.No.: 182

BCA 2301

Following Paper ID and Rol		e filled	l in	you	'Aı	1SW	er I	300	k.
PAPER ID: 21111	Roll No.								

BCA Examination 2018-19

(Third Semester)

DESIGN AND ANALYSIS OF ALGORITHM

Time: Three Hours

[Maximum Marks: 60

- Note: (i) Attempt all questions.
 - (ii) Be precise in your answer.
 - (iii) Assume any missing data.

SECTION-A

1. Attempt all parts of the following:

 $8 \times 1 = 8$

- (a) Justify why quick sort is better than merge sort?
- (b) What do you mean by Stable Sort? Name two stabe sort algorithms.
- (c) What are the steps to design an algorithm?

[P. T. O.

- (d) Difference between complete binary tree and binary tree.
- (e) Explain single source shortest path.
- (f) Name some terminologies, which are used in graphs.
- (g) Explain divide and conquer approach.
- (h) Define Back tracking.

SECTION-B

- 2. Attempt any two parts of the following: $2 \times 6 = 12$
 - (a) Describe any one of the following sorting technique and write respective algorithms, using examples:
 - (i) Selection sort
 - (ii) Insertion sort
 - (b) What are the different Greedy Criterion? Explain. Consider the five items with their weight and volumes:

$$I = \{I_1, I_2, I_3, I_4, I_5\}$$

$$W = \{5, 10, 20, 30, 40\}$$

$$V = \{30, 20, 100, 90, 160\}$$

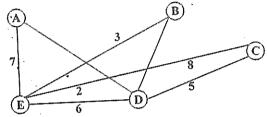
The Knapsack has capacity W = 60; find the solution of the problem using the concept of fractional Kanpsack.

(c) Explain binary search tree and its operations. Make a binary search tree for the following sequence of numbers show all steps:

42, 32, 90, 34, 68, 72, 15, 24, 30, 66, 11, 50, 10

(d) Brief the complexity classes of N, NP and NP complete, using example.

SECTION-C

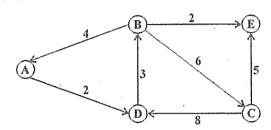

Note: Attempt all questions

- 3. Attempt any two parts of the following: $5 \times 2 = 10$
 - (a) Show all steps of Strassen's matrix multiplication algorithm to multiply the following matrices:

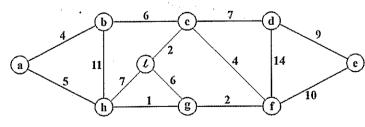
$$x = \begin{bmatrix} 3 & 2 \\ 4 & 8 \end{bmatrix} \text{ and } y = \begin{bmatrix} 1 & 5 \\ 9 & 9 \end{bmatrix}$$

- (b) Discuss asymptotic notations in brief.
- (c) Write short note on the following:
 - (i) n-Queen problem
 - (ii) Graph coloring

- 4. Attempt any two parts of the following: $5 \times 2 = 10$
 - (a) Define TSP problem in details. Find the solution for the following instance of TSP problem using branch and bound


(b) Sort the following array using heap sort technique:

- (c) Write BFS algorithm and perform it using an example.
- 5. Attempt any two parts of the following: $5 \times 2 = 10$
 - (a) Draw a Huffman tree for the following symbols whose frequency of occurrence in a message is stated alongwith the symbol below:


A:15, B:6, C:7, D:12, E:25, F:4, G:6, H:1, I:15

Decode the message 1110100010111011.

(b) Find the all pair shortest paths for the given graph:

- (c) Write short notes on the following:
 - (i) Multistage graph
 - (ii) Hamilton cycle
 - (iii) Time complexity and space complexity
 - (iv) Growth function
 - (v) Adjancency matrix
- 6. Attempt any two parts of the following: $5 \times 2 = 10$
 - (a) What is Spanning Tree? Explain Prime's algorithm and find MST of graph:

[P. T. O.

(b) Explain and write algorithm for Greedy method of algorithm design. Given 10 activities alongwith their state and finish time as:

$$S = \{A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9, A_{10}\}$$

$$S_i = \{1, 2, 3, 4, 7, 8, 9, 9, 11, 12\}$$

$$F_i = \{3, 5, 4, 7, 10, 9, 11, 13, 12, 14\}$$

Compute a schedule where the largest number of activities take place.

(c) Write Dijkstra's algorithm.

RRH