Following Paper ID and Roll No. to be filled in your Answer Book.											
PAPER ID : 9104/ 9304	Roll No.										

Int. LL.B Examination 2015-2016

(First Semester)

QUANTITATIVE ANALYSIS AND BUSINESS MATHEMATICS

Time: 3 Hours [Maximum Marks: 100

- Note:- (i) Attempt all section.
 - (ii) Section A carries 20 marks, Section B carries 30 marks and Section C carries 50 marks.

SECTION-A

1.	Fill in	the blanks.	All	parts	are	compulsory	:
							4.0

 $10 \times 2 = 20$

- (a) The curve is normal if $\beta_2 = \dots$
- (b) $\mu_2 = \dots$ in Kurtosis.
- (c) Spearman's Rank corretation coefficientr = 1

- (d) If two regression coefficient are, -0.1 and -0.9, the value of r is
- (e) From a pack of well shuffled cards, one card is drawn randomly. A gambler bets it is a diamond or a king the odds in favour of his winning the bet are
- (f) If the probability of n independent events are p₁,
 p₂,, p_n, then the probability that at least one of the event will happen is
- (g) If $A \subseteq B$, then $A \cap B = \dots$
- (h) If $A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$,

then A + B =

- (i) If a, b, c are in Arithmetic progression then $a + c = \dots$
- (j) If L.P.P. the objective function and constrants are

	(k) If A	$\subseteq B$ and $B \subseteq A$, then $A \dots B$.
	(1) Kur	tosis measures degree of
	(m) If co	orrelation is perfect, then r =
		h lines of regression between x and y passugh the point ().
	(o)A squ	are matrix A is non singular if
		yo events A and B are mutually exclusive, then $A \cap B$) =
	(q) The	probability of an imporssible event is
		matrices can be added if they have same
	(s) Med	ian is also known as positional
	(t) If β ₂	< 3, then the curve is known as
		SECTION-B
No	te :- Answ	er any three question out of five: 3×10=30
2.	Write sh	ort notes on linear programming.

2.

3. State and prove the addition theorem of probability for two mutually exculsive events.

4. If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$

from the products AB and BA, show that AB \neq BA.

- 5. If 3% of electric bulbs manufactured by a company are defective, find the probability that in a sample of 100 bulbs exactly five bulbs are defective.
- 6. For any set A and B, show that

$$(A-B)(B-A) = (A \cup B) - (A \cap B)$$

SECTION-C

Note :-All questions are compulsory. $12\frac{12}{2} \times 4 = 50$

7. (a)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix}$$

find A-I

- (b) Explain with examples:
 - (i) Frequency Curve
 - (ii) Ogive Curve
 - (iii) Mean
 - (iv) Median
- 8. (a) Explain Normal, Binomial and Poission distribution.

OR

- (b) If probability of failure in physics practical examination is 20%. If 25 batches of 6 students each take the examinations. In how many batches 4 or more students would pass?
- 9. (a) Explain in detail:
 - (i) Adjoint of Square Matrix
 - (ii) Property of Adjoint Matrix
 - (iii) Inverse of a Matrix

OR

(b) Determine the values of α , β , γ when

$$\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$$

is orthogonal.

10. (a) Describe the chief characteristics of the Normal curve. Why is this curve given a central place in statistics?

OR

(b) Find the Arithmetic mean of the following data:

Classes	Frequency	
10–20	4	
20–40	10	
40–70	26	
70–120	8	
120–200	2	
