
1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

In the last two decades, there has been an exponential reduction in computer hardware

costs. On the other hand due to the Internet revolution the network speeds have

exponentially increased. These have helped broaden the scope of use of software in

the field of education, entertainment, travel, transport, banking, payments, voting and

telecommunications and many more.

Software is now being used extensively in all phases of our lives, ranging from

routine tasks like setting up calendar and alarms to maintaining and controlling the

national infrastructures. Due to huge influx of data from various digital sources, speed

and newer ecosystems Software development has gained a global presence as

discussed by researchers like Shull et.al (2016) .These factors make it imperative to

have an effective framework for Software Engineering.

Software Engineering primarily deals with the design and development of software

followed by its maintenance and retiring of software. The increased use of technology

by the society emphasizes the importance and need for research, application and study

of newer software engineering quality paradigms to generate cost effective and budget

friendly software[s] for companies, vendors and consumers alike. In providing quality

and functionality of software as per needed standards, time limits and budgets in

2

delivery is still an issue. Along with these issues there exist residual faults and errors

in software that need to be taken care of even after delivery and installation. Bugs in

software could be due to error in source code or design of software. These errors in

software can have serious implications for businesses as well as consumers due to

their widespread application in critical functionalities like healthcare and

transportation and so on, as well as daily routine activities. In a society that is highly

dependent on computerization and thus on software, failures of software could result

into huge financial losses, security risks, frauds, injury or fatality and environment

disasters.

Providing error free software, correcting any faults in the software, proper

functionality and focus on quality and reliability of software after deliverance is

therefore an important goal of any software development and deployment team.

Diligence towards quality of software is thus not an option but a principle requirement

as discussed by many researchers like Arora et al. (2011), Jalote (2012), Pizzi et al.

(2013) and Amid et al. (2013). These authors further indicated that many industries

were not able to deliver high quality software for their clients and even fewer

recognized the importance of software having correct quality attributes that would

result in their efficient maintainability and functionality.

In pursuit to provide quality software, it becomes imperative for these software

systems to be easy to maintain as errors are an inevitable part of software

development. Software maintainability is a quality attribute that provides a probability

for repairing and restoring the software system or its components after failure or

modifications occur within acceptable cost, ease and speed. It is the ease with which

software systems changes can be deployed for repair of faults and increased

3

performance and adaptation of a changed environment. In the nineties, Pigoski

(1997), Li and Henry (1993) and recently Zhou & Leung (2007) showed that cost was

a growing concern in maintenance of software. Recent researchers like Ajmal et.al.

(2002) discussed that maintainability is a major cost concern and software

maintenance costs are increasing. Researchers like Chen et.al. (2017), Mehdi et. al.

(2013) and others along with the industry reports clearly suggest that a major cost i.e.

nearly 75% of software systems life cycle is increased due to maintenance

requirement.

The primary goal of software engineering is to develop quality software within the

constraints of time and budget. For developed software to be considered of good

quality it must match users’ expectations and requirements.

The first section of our chapter thus discusses software quality in brief.

1.2 SOFTWARE QUALITY

The software requirements can be clearly defined or indirectly suggested. Similarly

the end-use expectations from software may be implicit or explicit. Therefore as per

IEEE (1993) software quality is defined as the extent to which a software meets or

conforms to these requirements and expectations. The attributes for assessing

software quality are defined by ISO standards (2001). These standards specify

Functionality, Reliability, Usability, Efficiency, Maintainability and Portability as the

key quality attributes of a software system.

Quality of software has taken center stage in the software development life cycle in

the 1990s and beyond. This has been exemplified by Capability Maturity Models

4

(CMM) that involves methods for development and improvement of an organization's

software development process.

In the current scenario though the software industry clearly understands the benefits

of delivering high quality products, it faces challenges in doing so primarily due to

lack of time with strict delivery deadlines, constrained budgets, no definite ways to

measure the quality attributes and poor planning in different stages of software

development process. Several researchers like Huang et al. (2013), Elish and

Alshayeb (2011) and Dromey (1995) have emphasized that with the rapid increase in

complexity and size of software systems, the industry has gaps on deliverance of

quality products. They further emphasized that the industry sometimes completely

overlooks some of the prime quality attributes.

In the highly competitive industry of software ignoring software quality can result in

unnecessary cost strain, therefore quality assurance of software should be a part of all

steps of software development cycle.

Though ISO standards define the attributes of quality of software but they specify no

ways to measure these. Hence, a number of methods to measure these have been

investigated over the years. As there is no clear consensus as to what exactly is the

best way to measure these quality attributes, the search for different permutations,

combinations will keep on going for possible improvements in measuring these

quality attributes. Some of the representative research includes work done by

researchers for the last few decades viz. McCall et.al. (1977), Boehm et. al. (1978),

Bowen et. al. (1985), Sneed and Mercy(1985), Grady and Mercy(1987),

Sommerville(1992)], Chidamber and Kemerer(1994), Dromey(1995)], Li et. al.

5

(2000), Black (2001), ISO-9126(2004), Aggarwal and Singh (2007), Sastry and

Saradhi (2010), Elish and Alshayeb (2011) and Lee (2014). These works

additionally emphasize the importance of maintainability as a way forward to improve

quality of software.

This leads to our next section which discusses the role of software maintainability in

relation with software quality.

1.3 SOFTWARE MAINTAINABILITY AN ESSENTIAL FACTOR OF

SOFTWARE QUALITY

For categorization of maintenance of software the key word coined is

“maintainability”. It is considered as the first key quality of well designed software by

Sommerville (1992) in the starting of his book. The method of altering the software

that has been already delivered is called software maintenance and the effortlessness

with which this can be achieved is defined as software maintainability as discussed by

McCall et.al. (1977). Research done by Boehm et. al. (1978), McCall et.al. (1977)

,Broy et. al. (2006), ISO/IEC (2001), IEEE (1993), Dagpinar et. al.

(2003),Kitchenham and Pickard (1983), Ghezzi. et. al. (1991), Dromey (1995),

Rizvi and Khan(2010) , Koten and Gray (2006) and Elish and Elish(2009) all clearly

indicate that maintainability is a key attribute of software quality.

To facilitate the creation of better quality software, the maintenance process is

supported by an improved software maintainability parameter. A precise evaluation of

software quality fully depends on maintainability assessment. Bowen et. al.(1985) ,

Sneed and Mercy(1985) proposed in their work that a lack of maintainability always

6

contributes to a higher maintenance cost and effort. Grady and Mercy (1985) and

Oman and Hagemeister (1992) discussed that the aim of increasing the

maintainability of object oriented software is not just to be able to identify defects but

to be able to identify these defects as and when they occur.

Software helps organizations in keeping pace with the rapid change in technology,

business types, and competitions in the market place. A major part of the literature on

software engineering is focused on software development, despite many statistics

showing that maintenance of software takes bulk of the budget in SDLC. As shown

by Koskinens 2009 survey, costs due to maintenance resulted in 75-90% of

development and usage of business and command software along with 50-80% that

of cyber-physical software system. Developing software with good maintainability

may point to the parts of software that can be reused, which parts require

redevelopment, which parts require maintenance and the amount of effort required for

that. Numerous researches like Sommerville (1992) and Parikh et. al.(1983) also state

that 50-70% of the total life cycle incurred is majorly is used up on software

maintenance. Chen et. al.(2017) suggested that good measure of maintainability will

further lead to saving a major part of the total ownership cost (TOC) of software.

Software systems can exist as Procedural or object 0riented systems. With time the

application of procedural software systems has become limited. Object oriented

software systems are a norm nowadays. The focus of our work is also only for object

oriented software systems.

The next section hence discusses the Object Oriented technology and the major design

attributes of it.

7

1.4 OBJECT ORIENTED TECHNOLOGY

Object oriented technology is used extensively in development in all fields of

software systems. These systems may range from programming languages, databases,

linking and embedding to operating and graphics systems. Object oriented technology

primarily group data structures and operations to be performed on these in entities

called objects. In the initial stages of development cycle a considerable amount of

effort is required to identify objects and classes, attributes and operations and identify

associations between them. Object oriented programming is a fundamental technology

as stated by Lee et.al (2014) and Chidamber et.al (1994) that hold up quality goals.

1.4.1 Design Properties of Object Oriented systems

Object oriented design properties direct the designers what to support and what to

keep away. A number of measures have been defined so far to estimate object

oriented design discussed by Gupta et al. (2015), Chauhan et al. (2014) and

Venkatesan et al. (2013)[83]. The basic properties of Object Oriented systems

contribute to and support internal attributes which form the basis for external qualities

like maintainability McCall et.al.(1977) , Genero et. al.(2003), Li & Henry(1993),

Rizvi and Khan(2010) and many more as detailed in literature review. These

properties notably include Encapsulation, Abstraction, and relationships, Coupling,

Cohesion, Inheritance and Polymorphism. Encapsulation deals with information

hiding. Data from the classes is not available directly but can only be accessed by the

services provided by the classes. Abstraction is related to the user perspective of

necessary methods and attributes to define essential characteristics of an object. Three

types of relationships i.e. aggregation, association and generalization exists between

classes of an object. Cohesion refers to intra dependency between classes. For a

8

quality object oriented software it is required that we maximize cohesion and

minimize coupling. Coupling refers to the interdependency among modules.

Inheritance is used to create sub-classes from the existing classes by acquiring some

of their attributes and operations. Polymorphism provides the flexibility to use objects

in different forms within a parent class.

Practitioners and researchers frequently advocate that software maintainability should

be planned at the design phase of development process. Therefore it is necessary to

recognize object oriented design properties to quantify maintainability measures at

design phase of software development process. During identification of design

artifacts which have direct impact on maintainability measurement, a realistic view

should be considered. If we consider all artifacts and measures then they become

highly complicated, ineffective or time consuming. Therefore, there is a need to

identify design artifacts and measures which affect the maintainability measurement

process directly. In order to estimate maintainability, its direct measures are to be

recognized.

Design level properties like abstraction, inheritance, cohesion, coupling

encapsulation, etc. will be examined keeping in view their overall impact on software

maintainability.

The next section talks about maintainability factors.

1.5 MAINTAINABILTY FACTORS

Maintainability is defined by ISO-9126 (2001) as having sub attributes viz.

Analyzability, Changeability, Stability and Testability.

9

Software changeability is a significant part of maintainability, particularly in

circumstances where there are many changes in software requirements and

expectations. High- level designs have an impact on maintainability which influences

changeability as it is a sub factor of maintainability, as defined in ISO-9126 (2001).

The importance of maintainability and changeability of software can no longer be

ignored or underestimated. The intricacy and the need to conform can complicate

incorporating changes in software, if not thought over and incorporated early during

design phase itself. Its early estimate lays down the foundation of making possible as

well as easing out a software maintenance procedure. Consequently, as stated by

Ayalew & Mguni (2013) it is a quality of the software that requires close up

development cooperation with software maintenance.

Stability factor of software is an important and desirable feature of any standard

software design. Black (2001) in his work discussed stability is defined as the point to

which the software module can avoid unpredicted effect from the modifications of the

software. If this factor is not as per the desirable standard it largely increases the

impact of any modifications that take place on i.e. intensification of changes is

resulted throughout the design. The consequences of this is a higher actual cost and

effort than earlier estimated which in turn impact software maintainability due to

possibility of induction of new errors as discussed by Ebad and Ahmed (2015) and

Yau and Collofello (1985). Although, stability is most noticeably applicable during

maintenance but by emphasizing on the factor of stability in the initial stages of

development cycle, the software maintenance usefulness and effectiveness may be

improved. In view of above, scholars and industry personal always recommend an

effective and correct assessment of software stability early at development life cycle.

10

Regardless of the fact that stability is dynamic and most noteworthy to the system

development lifecycle, it is very poorly achieved.

Thus, we can say that the risks we face in software stability due to unexpected effects

of modifications are a major concern and it affects the overall maintainability cost of

the software.

Calculating maintainability at a later stage often results in delayed reception of crucial

information therefore causing a holdup in response and implementation about changes

in software design as discussed in Aggarwal et. al. (2005), Elish et.al.(2009) and

Mishra (2005). This results in an increase in terms of cost and additional work.

Consequently, early estimation of maintainability in the software development cycle

may improve design quality and decrease maintenance efforts and cost as discussed

by Chaumun et.al. (2002), kiewkanya et.al. (2004), Mishra(2005), Muthanna et.al.

(2000), Rizvi and Khan(2009), Dallal (2013) and Kumar et. al.(2015).

For researchers, quality controllers and programmers planning and evaluation of

maintainability at design phase of the software development life cycle is thus of

inevitable importance.

Taking these facts into consideration our research work is thus focused on evaluation

of maintainability at design stage to deliver quality oriented maintainable software.

Also after relevant study the quality characteristic of maintainability has been refined

into its important sub-characteristics that have significant contribution in

maintainability evaluation at design phase of software development cycle. After

detailed review of work done by McCall et.al. (1977), Kiewkanya et.al.(2004), ISO-

9126(2001), Rickard et.al. (2002), Aylew et.al. (2013), Chuamun et.al. (2002),

11

Heitlager et. al. (2007), Dallal(2013), Genero et. al.(2003) and Yau and Collofello
(1980), it has been concluded that Changeability and Stability are the two most

significant factors affecting software maintainability evaluation.

The next section gives the objective of this research work and explains the Problem

statement.

1.6 OBJECTIVE OF THE PROPOSED RESEARCH WORK AND PROBLEM

STATEMENT

It is evident from the above discussion that software maintainability should be

evaluated at design phase of development life cycle. Practitioners emphasized on the

need of having an organized and efficient approach for maintainability measurement.

Based on the proposed criterion to measure maintainability, the objectives of the

research are to:

1. To develop and draw attention to the need and significance of

maintainability evaluation model.

2. Highlight the phase at which maintainability be evaluated in order to get

maximum out of it.

3. To identify maintainability factors and design constructs.

4. Display a relationship among maintainability with object oriented construct.

5. To validate the proposed maintainability evaluation model for better level

acceptability.

12

In relation to the above questions that are pertinent to the concerned topic of the

research, the study was designed to be a mix of qualitative and quantitative in nature.

In order to address the above research problems, the problem statement that has been

formulated for the research is identified as ‘A Model for Maintainability Evaluation

of Object Oriented Software at Early Phase’. The problem is further subdivided

into three sub problems enumerated as follows:

1) Changeability Measurement Model (CEMOOD) development: During literature

survey it was identified that changeability is a key factor to maintainability, and

therefore this sub problem deals with developing a model to measure changeability.

For this sub problem we develop the changeability measurement model with the help

of object oriented design properties. This model shows a high correlation among

changeability and design properties namely Encapsulation, Inheritance, Coupling and

polymorphism. Empirical validation is used to validate the proposed model for better

level of acceptability.

2) Stability Measurement Model (SEMOOD) development: During literature survey

it was also identified that Stability is a key factor to maintainability, and therefore,

this sub problem deals with developing a model to estimate Stability. For this sub

problem we develop the Stability measurement model with the help of object oriented

design properties. This model shows a high correlation among Stability and design

properties namely Encapsulation, Coupling and Inheritance. Empirical validation is

applied to validate the proposed model for better level of acceptability.

3) Maintainability Measurement Model (MMOOD) development: Changeability

and Stability measures are used to develop maintainability measurement model that

13

works at design phase. In order to reinforce the claim of correlation between

maintainability with changeability and stability, the proposed model has been tested

and justified with the help of statistical measures. Finally, it incorporates the empirical

validation of the maintainability measurement model. Also we have compared our

proposed maintainability model with two existing maintainability models.

1.7 MOTIVATION AND SIGNIFICANCE OF OUR WORK

As extensively detailed earlier in this chapter we can summarize the following:

a) Ensuring software quality is a necessity for any software to be efficient

within time and cost constraints.

b) Software maintainability is a key attribute of software quality.

c) Cost of software maintainability is a huge slice, nearly 50-90% of the

total cost of ownership of the software.

d) Even though software maintainability is an essential factor of good

software, it is often poorly managed by software industry.

e) Many standard organizations clearly state the attributes of software

quality but they specify no ways to accurately measure these quality

attributes.

f) Many researchers have over the years attempted to give better and

practical methods to effectively evaluate these attributes but there is

always a need for better solutions as a perfect fit solution will always be

elusive.

14

g) These factors motivate us to propose an effective evaluation model for

measurement of software maintainability taking into consideration the less

explored combination of sub attributes of maintainability viz.

changeability and stability.

1.8 OUTLINE OF THE THESIS

The Thesis is organized into the following six chapters.

CHAPTER 1: INTRODUCTION

This chapter provides introduction to the area, software quality, software

maintainability measurement, maintainability related issues and its measurement at

design phase, object oriented design, problem statement, its solution, motivation and

significance of proposed research followed by thesis outline and summary.

CHAPTER 2: LITERATURE SURVEY

This chapter consists of a literature survey on relevant topics, prominently including

maintainability models. It includes comprehensive report on software maintainability

models and related issues, comparison of maintainability measurement models along

with a critical examination of the same and contextual inferences and conclusions.

The relevance of sub factors of changeability and stability in relation with Object

Oriented properties and maintainability is explored extensively.

CHAPTER 3: CHANGEABILITY EVALUATION MODEL (CEMOOD)

This chapter discusses the proposed Changeability Measurement Model (CEMOOD)

for object oriented design and established statistical correlation between changeability

15

and design properties. The chapter also provides empirical validation of the

changeability measurement model.

CHAPTER 4: STABILITY EVALUATION MODEL (SEMOOD)

This chapter illustrates the Stability Measurement Model (SEMOOD) for object

oriented design. The chapter also provides empirical validation of the stability

measurement model.

CHAPTER 5: MAINTAINABILITY EVALUATION MODEL (MMOOD)

This chapter presents the Maintainability Measurement Model (MMOOD) in terms of

changeability and stability. Furthermore, the relationship of maintainability with these

factors has been tested and justified with the help of statistical measures and validated

using experimental tryout; it incorporates the empirical validation of the

maintainability measurement model. Further our maintainability evaluation model

(MMOOD) has been compared with two existing maintainability models.

CHAPTER 6: CONCLUSION AND FUTURE WORK

Finally, this chapter highlights the major contributions and future direction of research

on the topic.

1.9 SUMMARY

In this chapter we have introduced the area with the help of concepts like software

quality especially maintainability of object oriented software. We illustrated

maintainability factors and maintainability measurement in general and exclusively at

design phase of development life cycle. Significance of maintainability measurement

16

and its importance at design phase has been analyzed for producing high quality

software. Subsequently, problem statement, its solution, motivation and impact of

proposed research is listed and finally the outline of the thesis is given chapter wise.

In the next chapter, we discuss the literature survey in detail.

17

CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

Maintainability is “the ability to identify and fix a fault within a software component”

as given by ISO-9126. Software maintainability is defined by IEEE (1990) as “the

ease with which a software system or component can be modified to correct faults,

improve performance or other attributes, or adapt to a changed environment”.

Researchers such as Aggarwal et. al. (2005), Al Dallal (2013), Sommervillie (1992),

Boehm et. al. (1978), McCall et. al.(1977), Lee (2014), Kiewkanya et. al. (2004),

Grady and Mercy(1987) and many more have made efforts to evaluate and quantify

maintainability of software for the last few decades. Finding a way to measure

maintainability accurately is important as many researchers like Lientz et.al.(1978),

Foster (1993) and Glass(2003) along with others have stressed upon the fact that

major cost of SDLC is incurred due to maintenance efforts of software. Efforts have

been made for this but actual implementation of these measures is still at a

comparatively smaller scale in the industry as many times this evaluation is rather

subjective. The importance and advantages of evaluation of maintainability in early

stages of Software development life cycle has been advocated by many researchers

such as Malhotra and Chugh (2016), Rizvi and Khan (2011), Aggarwal et. al.(2006),

Ping(2010), Hincheernan et. al.(2012) and Boehm et. al.(1978).The constant need for

better methods of evaluation of maintainability for object oriented software at early

SDLC phase has encouraged us to undertake this research.

18

The milestone definition of maintainability is given by ISO 9126-1. It is an expansion

of previous work done by researchers like McCall et.al.(1977), Boehm et. al. (1978),

FURPS+ (1987) in defining a set of software quality characteristics. ISO-9126 (2001)

has identified four major sub characteristics of maintainability:

 1) Changeability i.e the amount of effort required to change a system.

 2) Stability i.e the negative impact due to system changes.

 3) Testability is the effort needed to verify (test) a system change.

4) Analyzability characterizes the ability to identify the root cause of a

failure within the software.

We have in section 2.4 studied in details the various maintainability factors and from

that we can infer that changeability and stability are key factors of maintainability.

Testability is usually studied as a separate external quality attribute rather than as a

sub factor of maintainability.

Since the 1970s, the software engineering community has been doing experimental

research on software maintainability. Research in this area has become even more

relevant due to increasing complexity of software systems in the 21st century and the

huge costs incurred in their maintenance.

Before going into a detailed literature survey, a brief time line in the research on

maintainability can be summarized as:

McCall et.al. (1977) and Boehm et.al. (1978) proposed quality models in which they

referred to maintainability as an important attribute of a good quality

software[s].These models were used as a base by ISO to define its quality model ISO-

19

9126(2001) in which they defined maintainability as a key quality attribute having

four sub factors of Analyzability, Changeability, Stability and Testability.

Berns(1984) specified that the level of difficulty in understanding software systems

had an impact on the maintenance effort involved. Maintainability measure was

estimated using complexity metrics by researchers Sneed and mercy (1985),

Chidamber and Kremer (1991). Grady and mercy (1987) used supportability as a

factor to evaluate maintainability. Oman and Hagemeister (1992), Coleman et.al.

(1994) emphasized that the analysis of software maintainability can act as a guide for

decision making in software. Li and Henry (1993) used regression technique to

calculate maintainability. All these models were superseded with more efficient

models using similar or newer techniques to evaluate maintainability. These models

however laid a solid foundation for the future work in the area of development of

quality models around the attribute of maintainability.

In the early 2000s the models proposed by authors like Muthana (2000) for

maintainability mostly focused on procedural software. These were very effective for

simple applications. With the introduction of large and complex systems based on

Object Oriented approach and design attributes of polymorphism, encapsulation and

inheritance, need for quality models for this approach became very evident. Despite

this fact, not enough research works have been committed to explore the concepts of

software maintainability in object oriented systems.

The Extensive literature survey done by us majorly focused on software

maintainability in object oriented software at design phase but for completeness we

have mentioned few papers on structured approach too. Further, we have arranged our

broad literature survey in sections that review work done in software maintainability

20

at main three stages of SDLC viz. Analysis Phase, Design Phase and Coding Phase.

Since this dissertation focuses on maintainability and its two sub factors changeability

and stability, literature survey on these two important sub factors is provided in detail.

In this chapter we present the summary of the systematic literature review done to

gather evidence on software maintainability measurement of object oriented design.

2.2 RELATED WORK ON MAINTAINABILITY

As discussed earlier the researchers have tried to evaluate maintainability at various

phases. The critical review of the related work on the topic is mentioned in the

following sub sections.

2.2.1 Maintainability at Analysis Phase:

Maintainability can be measured at different phases of software life cycle. Here we

discuss few researchers work done on maintainability at analysis phase of SDLC.

 David E. Percy (1981) used an evaluation process that followed four distinct stages

of planning, calibration, assessment analysis and reporting by using questionnaires

checklist by five independent evaluators during initial phases of development life

cycle. They with effort arrived at a maintainability evaluation method that was cost

effective and could to some reasonable degree be implemented. The authors used

linear regression to evaluate a model for reliability. They further used reliability factor

to evaluate maintainability at analysis phase for procedural modules of software.

Polo et al. (2001) studied code metrics for legacy programs and applied logistic

regression to find correlation between these metrics and maintainability requirements.

Their work provided a guideline of estimating maintainability of outsourced projects

21

in the initial stages when the maintenance contracts are signed and there is very little

information about the software that has to be maintained. In spite of the limitations

positive results were shown for maintainability estimation in these cases.

Polo et.al (2002) developed a methodology “MANTEMA” for prediction of

maintainability as an extension of ISO/IEC 12207 standard. The well established

European consultants Atos ODS applied this for software maintainability in

collaboration with university. In their work the authors showed positive results on

method that could help in arriving at service level agreements with the outsourcing

organizations for maintenance of software on experimental basis even though details

of information of the software to be maintained are not completely known.

Wensheng Hu et al. (2014) discussed that analysis of requirements is an important

phase in SDLC. A large enough percentage of total faults that occur later and need

maintenance are from requirement phase. Unambiguity in defining requirements

specification leads to project success and consistency. Using Natural Language

Processing methods and grey scale correlation, the authors in this paper presented a

classification method in which firstly the keywords from various functional

requirements were segregated and assigned a weight vector. Secondly using grey

system, grey correlation coefficient was computed for these weight vectors and

further used to construct a correlation matrix. Statistical tools were used to classify the

specification statements of functional requirements. This work could provide

guidance in improving development and maintenance of software.

22

2.2.2 Maintainability at Design Phase:

Many researchers worked on software maintainability at design phase with varying

success and conclusions. Comprehensive studies of these are presented here.

Muthanna et al. (2000) proposed a model based on Polynomial Linear Regression for

structured software at design phase of SDLC. The authors used software design

metrics and statistically evaluated maintainability for software systems. Using these

metrics they identified error prone modules which could assist the designers calculate

better maintainability models .This model was not applicable to Object Oriented

systems.

Subramanyam et al. (2003) used a subset of C&K metrics to help determine software

defects in the early stages of SDLC. They used industry data from software developed

in two Object Oriented languages viz. C++ and JAVA. The authors showed a

significant association between these metrics and software defects irrespective of the

size of the considered softwares.

Kiewkanya et al. (2004) used three methods to develop maintainability models and

then presented a comparison between these three models. These maintainability

models used two sub factors of maintainability namely modifiability and

understandability. The first technique uses metrics discrimination analysis to correlate

pattern between maintainability and design metrics of structural complexity. In the

second technique weighted-score-levels of understandability and modifiability were

converted into scores. The third method applies weighted sums which are a

combination of levels of modifiability and understandability, obtained after the

application of the two models of understandability and modifiability. A comparison

23

of maintainability models obtained from three techniques using methods of

association, aggregation and classification were also done. The results showed that

there was close accurateness of results of models obtained using the first two

methods. There are however constraints for these models to give good results: Firstly

for metrics determinant model, it is required to have an automated tool for the

measurement its metrics. Secondly for weighted score model questionnaire technique

is needed to get understandability and modifiability score for the relevant softwares,

which is not a very accurate method of getting scores. Lucca(2004) developed a web

application maintainability model specifically for web based applications using

metrics like size, coupling and complexity metrics.

Genero et al. (2005) carried out trial analysis on relation between maintenance of

UML (Unified Modeling Language) class attributes and a range of complexity

metrics. From these trial analyses the authors found two metrics to be significantly

affecting maintenance efforts viz. number of methods and number of associations.

After laboratory experiments used to evaluate these two metrics, it was determined

that these amounted for 28% of the maintenance efforts. The results indicated that in

future research these factors could be explored in detail to predict maintenance

estimations.

Koten and Gray (2006) used Bayesian Belief Network (BNN) on Li and Henry’s

datasets for predicting maintainability in object oriented systems. Systems. These data

were collected from various Object Oriented systems. The author compared results

from two systems namely UIMS and QUES by applying regression methods. He

however did not give a generalized model for all object oriented systems for

evaluating maintainability with accuracy. The author showed his model gave better

24

performance compared to the models developed using regression analysis till that

time. Aggarwal and Singh (2007) used artificial neural networks ANN to predict

maintainability for a Object Oriented software and they used the metrics LCOM, DIT,

WMC, NOC, RFC, DAC, MPC, NOM for this. The results presented by them were

adequate but not very high for prediction of maintainability. The performance of their

model was largely dependent on the training data.

Genero (2007) stresses the relevance of having methods to measure the design

properties like structural complexity based on associations and generalizations of

Object Oriented systems. They further studied whether metrics of class diagrams

could be used to predict the two sub factors of maintainability i.e. understandability

and modifiability. The measures studied were more correlated with the subjective

estimations about the complexity of class diagrams, hence these needed to be

supported empirically with real life projects datasets and values from the industry

which the authors proposed as limitations of their work and also a future direction of

work. Breesam (2007) attempted to validate a set of metrics of class diagrams that can

be used to measure quality of Object Oriented systems in terms of class inheritance

based on generalizations and specializations. They used analytical and empirical

methods to obtain results from these metrics. The data used to validate the studied

metrics was limited by the experience of the students in Object Oriented Systems.

Zhou et.al.(2007) employed a new method called MARS i.e Multiple adaptive

regression splines to predict maintainability of Object Oriented systems. They used

the two databases given by Li and Henry (1993). They compared their results with

four prediction models based on different techniques to measure maintainability.

These four models were artificial neural networks models, support vector models,

25

multivariate regression models and regression tree models. The results fared better for

their model as compared to the four models for one data set and almost equivalent if

not better for the other dataset.

M.O. Elish et. al (2009) also used Li and Henry datasets to develop a model called

TreeNets to predict maintainability for Object Oriented Systems. The TreeNet model

is essentially based on data mining techniques and is an extension of CART i.e.

Classification and tree regression method. Though a few maintainability prediction

models as given by Lucia(2005) based on calculating adaptive maintainability

prediction, Koten (2006) used BNN methods as discussed earlier, Misra (2005)

employed corrective maintainability effort were available bur the prediction accuracy

of these models were found to fare badly on criteria specified by Conte(1986)and

MacDonnell (1997). TreeNet model was thus proposed o provide better

maintainability prediction accuracy. The authors were further able to compare their

results with the five models considered by Zhou et.al. The results showed that the

TreeNet model achieved better prediction results. Further work was though required

with other datasets to provide additional support to the results of this work as to

realize the full implications and possible limitations that occurred due to these

datasets.

S. Rizvi et al.(2010) selected metrics like number of classes, attributes, methods,

associations, aggregations, dependencies, generalizations, aggregation hierarchies,

generalization hierarchies , maximum depth of inheritance and so on from the data

given by Genero(2007) , to express the internal quality attributes of modifiability and

understandability of Object Oriented softwares using multiple linear regression. The

authors further used these models of internal quality attributes to derive a model for

26

maintainability. They further validated their model using a set of real life projects.

They had better results as compared to the TreeNet model proposed by Elish (2009).

Though they arrived at satisfactory values of estimating maintainability but as future

work proposed that more efficient models could be developed using other factors of

quality from ISO-9126. Sastry and Saradhi (2010) tried to apply software metrics

using GUI and scrutinized relationships between metrics and quality attributes.

Malhotra and Jain (2011) reviewed the metrics like coupling, cohesion, inheritance

and so on that can be used to predict maintainability , fault proneness, reliability etc.

The authors have studied numerous software metrics and varied literature that use

different subsets of these metrics. They have also reviewed the different approaches

like Support vector machines, naive bayes network, random forest, artificial neural

network, decision tree, logistic regression etc. followed by researchers to analyze

different datasets. The purpose of this study is to provide various researchers a

platform for comparative analysis for identifying maintainability and fault proneness

of Object Oriented systems. Gautama Kang et. al. (2011) used two internal quality sub

actors viz. understandability, modifiability along with addition of two metrics

scalability and class complexity to calculate maintainability. The authors inferred

better correlation values of these four factors with that the compound MEMOOD

model for maintainability.

Y. Dash (2012) proposed a maintainability model based on MLP(multi layer

perception) and the authors calculated maintainability effort as a dependent variable

with principal components of Object Oriented metrics as independent variables. These

variables were like DIT, NOC, NOM, size and so on. They calculated the r-

correlation coefficient and validated it to be superior to the WARD neural network

27

model proposed by Thwin (2005). Chug and Malhotra (2012) proposed a

maintainability prediction model based on machine learning. They used three

Machine learning algorithms namely: GMDH- Group Method of Data Handling,

PNN- Probabilistic Neural Networks and GA- Genetic Algorithm. The two data sets

used were from Li and Henry viz. QUES and UIMS. They showed that their

prediction accuracy for GMHD models at pred(0.25) and pred(0.30) were much better

than the values achieved for previous models that they have compared according to

criterion set up by Conte(1986) and Mac Donell (1997).They claimed that their

(GMDH) network model is good model for estimating maintainability of software. At

the code level Hincheeranan et al (2012) have proposed models for two sub factors of

external quality attribute: maintainability viz. flexibility and extendibility. They have

suggested a tool for calculating maintainability based on four components viz. UML

case tool , XML parser, Metric calculate and display metric results using the two sub

factors of flexibility and extendibility. The proposed tool has not been developed or

validated mathematically or empirically.

Al Dallal J. (2013) empirically studied the relationships between class quality

attributes of size, cohesion and coupling with maintainability. The author developed a

model based on the mentioned internal attributes to calculate maintainability. The

results showed that classes with good class qualities of higher cohesion, lower

coupling and smaller sizes were easier to maintain than those with poor quality

values. This model thus helps identify the classes with low maintainability and assists

in testing and documentation of the same for improving maintainability of softwares.

Chug and Malhotra (2013) explored the meaning and measure of maintainability in

the changed scenario where databases were heavily used by windows and web based

28

applications. For these data intensive applications they proposed a new set of metrics

and using data from five real- world applications calculated maintainability using

ANN(Artificial Neural Network) technique. The outcome from their study showed

fair results for predicting maintainability for medium sized systems. As a future work

they proposed calculating maintainability for larger Object Oriented systems and

aspect oriented software development methods.

R. Malhotra and Chug (2013) have proposed a new metric suite, an extension of

Chidamber and Kremer metric suite. They proposed to add two new metrics NODBC

and SCCR .They have evaluated and analyzed this metric suite for their effectiveness

for predicting maintainability of Object Oriented softwares. They have validated the

model for data intensive softwares. These are implemented both at design and code

phase of Software development life cycle.

Rajendra et. al (2015) estimated the maintainability of Object Oriented systems using

the two sub factors of maintainability as flexibility and extendibility. They further

established significant models for each of these sub factors internal attributes from the

design properties attributes using multivariate linear regression technique. They

calculated flexibility in terms of design properties coupling, cohesion and inheritance.

They calculated the value of extendibility using design properties of coupling,

cohesion and polymorphism. The authors further calculated the value for external

quality attribute maintainability with flexibility and extendibility as independent

variables. . The results they arrived were significant but using other factors of quality

factors newer models for maintainability with improved results could be proposed.

29

Malhotra and Chug (2016), in their paper compiled a systematic review of studies on

software maintainability between the years 1991 to 2015.The authors arranged and

analyzed the work on maintainability using tangents of design metrics, tools and

algorithms, data sources and so on. They summarized the following facts:

 Maintainability is still a major attribute of software quality.

 Maintainability still amounts to a major part of costs incurred in software

development.

 Maintainability is more effective if measured in early phases of SDLC.

 Measure of Object Oriented design properties like coupling, cohesion,

inheritance and so on gives best results for predictive maintainability.

 Design metrics remain the best method to obtain the characteristics of

given software.

They compiled a total of 96 studies from various journals, conference proceedings

and others. After an extensive review they also proposed that newer research can be

done on open source datasets.

 Chen et.al. (2017) in their paper stressed the huge level of cost saving in software by

understanding the importance of software maintainability, and suggested answers to

questions of decision regarding what parts of software to be reused, what parts to be

redeveloped, the theoretical estimation of effort required to do so and thus giving

indicators as how to reduce ownership costs.

30

2.2.3 Maintainability at Code Phase:

Hayes et al. (2003) in their new approach OMA (observe-Mine-Adopt) used

maintainability product and perceived maintainability as two measures of

maintainability as to improve software practices for better maintainability. The

authors suggested that observations regarding which things work and which do not

occur naturally during the process of software study. These observations when mined

can be used to validate processes and practices which can be formalized as to be

adopted by the team.

Hayes et al.(2004) used person hours as a measurement for estimating adaptive

software maintainability model called AMEffMo. They also used COCOMO and

regression analysis methods for providing managers and maintainers with useful

information regarding adaptive maintenance efforts.

Prasanth (2008) proposed a method for estimating maintainability in terms of code

complexity. The authors took samples of four and made assessments of complexity in

absolute and relative terms. Code complexity is measured at testing phase. The

authors used the fuzzy repertory table (FRT) technique for obtaining domain

knowledge from testers for the software used for complexity analysis. They then used

regression analysis to predict maintainability from the product's code complexity.

Jin and JA Liu (2010) proposed a SVM and clustering technique to predict the

software maintenance effort. The probability value calculated by the authors showed a

statistical significant correlation between the predicted and actual maintainability

efforts. This predictor could be used to predict the inclusion of modules from

31

incremental releases of similar software for better maintainability. They carried out

the maintainability analysis at source code stage of Software development life cycle.

They studied the code written in C++ for HTML pages which could be part of

software applications as standalone software or an embedded component.

2.2.4 Maintainability at Development Life Cycle:

M. Genero (2003) suggested in their work that using early metrics for analysis and

design in Object Oriented software can greatly enhance decision making. The external

quality attribute of maintainability can be better measured based on these metrics.

They conducted a controlled experiment, gathered empirical data and showed positive

results. The results showed that early metrics measuring internal attributes like UML

class diagrams and structural complexity leads to a fair chance of obtaining good

maintainability indicators based on which maintainability models can be developed.

They also suggest further empirical studies especially based on industrial data for a

more comprehensive outcome.

Prasanth et al (2009) used a method for predicting maintainability of software using

code complexity at the testing phase. Absolute and relative complexity measurement

was done from four sample products. Domain knowledge of testing experts is

collected through FRT- fuzzy repertory table technique. Maintainability is predicted

using regression analysis from samples code complexity.

A complete charting of the existing Maintainability Models proposed by Various

Expert has been done in Table 2.1.

32

Table 2.1: A Systematic View of Maintainability Models Consider by Various

researchers.

Year Study/Author Maintainability

Evaluation

Approach/Model

SDLC

Phase

Validation

1984 G.M-Berns Maintainability Analysis

Tool for use with

FORTRAN on a VAX

Not given No

Implementation

1985 T.P. Bowens Average number of days

to repair code.

Code level No

1985 Sneed Mercy

Fuzzy Model Code

Level

No

1987 Kafura and

Reddy

Cyclomatic complexity as

well as six other software

complexity metrics

Code

Level

No

1987 Robert

Grady

(At HP)

FURPS Model Code

Level

Theoretical

justification

1991 Geoffrey &

kemere

Cyclomatic Complexity

Density

Code

Level

Yes

 Continued on page………

33

Table 2.1 continued…

1992 Oman

Hagemeister

Halstead’s Effort (aveE),

McCabe’ Cyclomatic

Complexity (G), LOC

(Lines of Code)

Code

Level

No

1993 Li Henry

Henry model based on

coupling between classes

Code

Level

Yes

1994 Coleman

Oman

Oman model Code

Level

Yes

1995 Welker

Oman

(Improved Oman Model)

 Cyclomatic Complexity

V(g’),LOC (Lines of

Code)

Code

Level

No

1995 Dromey’s

“Quality

Model”

Quality Model Code

Level

Theoretical

justification

2000 Muthanna et

al.

Model based on

Polynomial Linear

Regression

Design

Phase

No

2003 Huffman

Hayes et al.

 Observe Mine Adopt

(OMA) Based on

Maintainability product

Code

Level

No

 Continued on page………

34

Table 2.1 Continued….

2004 Lucca

Fasolino

WAMM

Web Application

Maintainability Model

Web based

Approach

Web based

Approach

2005 Hayes Zaho

(Main Pred Model) LOC

(Lines of Code), TCR

(True Comment Ratio)

Code level

No

2006 Koten Gray Bayesian Network

Maintainability Prediction

Model

Design

Phase

Yes

2008 Prasanth

Ganesh &

Dalton

With the help of

FRT(Fuzzy Repertory

Table)

Testing

Phase

No

2009 MO. Elish &

KO Elish

Produced Treenet model

using stochastic gradient

boosting

Design

Phase

Yes

2010 C Jin & JA

Liu

Based on Support vector

machine

Code level

Based on vector

machine

2010 S. Rizvi et al. MEMOOD Model Design

Phase

Yes

2011 Gautama

Kang

Compound Memood

Model

Design

Phase

No

Continued on page……

35

Table 2.1 continued…..

2012 Alisara et al. Maintainability

Estimation Tool (MET)

Code level

No

2013 Al Dallal, J.

Object-oriented class

maintainability prediction

using internal quality

attributes.

Design and

code level

No

2014 R. & Chug

A.

 A Metric Suite for

Predicting Software

Maintainability in Data

Intensive Applications.

Design

Phase

Based on

Metrics

2015 Singh et al.

 Estimation of

Maintainability in Object

Oriented Design Phase:

State of the art

Design

phase

Theoretical

Explanations

2015 Rajendra

et.al

Model based on Object

Oriented design properties

Design

Phase

No

2.3 MAINTAINABILITY FACTORS

Various permutation and combinations of metrics and internal quality attributes have

been suggested by several researchers like Genero (2007),Rizvi (2010), Rajendra

(2015), Aggarwal (2006), for evaluating maintainability quality attribute of Object

Oriented software for different phases of SDLC and at design phase. Table 2.2

36

provides a comprehensive view of the maintainability factors recognized by area

experts of Table 2.1. It is also highlighted from the table that Changeability and

Stability are the significant maintainability factors.

Table 2.2: Maintainability Factors Consider by Various Experts

Sub-characteristics
A

na
ly

za
bi

lit
y

C
ha

ng
ea

bi
lit

y

C
oh

es
iv

en
es

s

C
om

pl
ex

ity

Fl
ex

ib
ili

ty

M
od

ifi
ab

ili
ty

M
od

ul
ar

ity

St
ab

ili
ty

Te
st

ab
ili

ty

U
nd

er
st

an
da

bi
lit

y

Models

J. A. McCall X X

ISO 9126-1 X X X X

R. Land X X X X

Dubey et.al X

A Chaumun et. al X

B. W. Boehm X X X

Y. Ayalew et.al. X X

I. Heitlager X X X

Al dallal et.al. X

D. Peercy X

H. Sneed et al. X

S. S. Yau et al. X X

Continued on page…..

37

2.3.1 Design Properties That Influences Maintainability

Object oriented design properties overcome the negative aspect of procedure oriented

design. In order to design the software through an object oriented approach, the three

essential properties are considerably being used i.e. encapsulation, inheritance and

coupling. Object oriented design properties that have positive impact on

maintainability evaluation has been identified and consolidated chart for the same is

given in Table 2.3.

Table 2.2 continued………

IEEE Std. X X

G. R. Dromey X

Elish et.al. X

S. W. A. Rizvi et al. X X X

Rajendra et.al. X

Genero et. al. X X X X

Godin et. al. X X

M Alshayeb et. al. X

M. J. Kiewkanya et al. X X X X

Li et.al. X

Hagemeister et. al. X

Genero et. al. X X X X

Godin et. al. X X

M. J. Kiewkanya et al. X X X X

38

Table 2.3: Object oriented design properties contributing in maintainability

evaluation: a critical look

Design Properties

En
ca

ps
ul

at
io

n

 C
ou

pl
in

g

In
he

ri
ta

nc
e

Po
ly

m
or

ph
ism

Author/Study

 Changeability/Stability

Li and Offutt (1996) X X X

Godin et. al (2000) X

Arisholm et. al (2000) X

A Chaumun et. al (2002) X X

Heitlager et. al. (2007) X X

Riaz et.al (2009) X X

Abidi (2009) X

Dubey et.al (2011) X X X X

A Hincheeranan (2012) X X X X

Y Aylew et. al (2013) X

Al Dallal et. al (2013) X

Malhotra et. al (2013) X X X

Ankita et. al. (2014) X X X X

Elish et al (2010) X X X

Ebad et al. (2015) X

39

2.4 LITERATURE SURVEY ON CHANGEABILITY

Researchers, practitioners and quality controllers emphasize on the need of having a

systematic approach for changeability measurement. They argue that changeability

can be measured at design phase by assessing the design level metrics of

changeability. The contextual findings of related work on software changeability and

the approaches available for its measurement may be summarized as follows:

In a study by H. Kabaili et al. (2001), the authors have discussed cohesion as a

changeability indicator in SDLC phases. In this work, authors explored whether there

exists a correlation between cohesion and changeability. Two cohesion metrics, LCC

and LCOM were considered by author for estimating software changeability and a

model of change impact was applied. To test the hypothesis that cohesion and

changeability are correlated, researchers inspected the well known cohesion metrics,

LCC but due to deficit of resources, were unable to examine the complete list of

proposed sixty six changes of their impact model for object oriented language C++.

Rather, researchers limited themselves to a subset of six changes which they preferred

according to a set of four chosen criteria. They could not come up with a strong

correlation between cohesion and changeability. They could not prove with

conformity that defined cohesion metrics were good indicator of changeability.

Study done by M. Ajmal Chaumun (2002) discussed Changeability in terms of

measuring change impact while considering correlation coefficient among two

variables and a WMC metric. After deleting the outliers cases, the correlation

coefficients was found to be weak and of the order of 0.55. Using Anova test they

were though able to support that WMC metric and change impact is related. They

40

applied their study in application areas such as telecommunications. Using change

Impact analysis for assessing changeability of software systems they were able to

derive a limited model to implement successful system compilation after changes. A

generalized model for performance of changeability was though not proposed by

them.

Study done by M. K. Abdi et al. (2009) proposed a probabilistic method having

Bayesian networks as opposed to earlier non-probabilistic approaches to help analyze

change impact in object oriented systems. They primarily used coupling

measurements like coupling between objects including classes used by target,

coupling with no ancestors and so on to verify their approach. They used three

scenarios in which a correlation hypothesis amid different metrics of coupling and the

change impact that had been previously established in former works. In these three

scenarios the change impact was found to be weak, of the order of 0.46, 0.48, 0. 54. In

the fourth scenario the results in relationship proposed between these metrics and

change impact contradicted to earlier results, leading them to search a hypothesis

explaining factors like complexity and system size. This work suggests methods for

improving maintenance of software in object oriented systems and focuses on change

impact analysis in generic SDLC phases.

Yirsaw Ayalew et al. (2013) used cases on open source software and tried to explore

impact of coupling and complexity metric in changeability and assess modularity of

the system. The authors used three coupling metrics as indicators of changeability on

open source software and showed that coupling metrics may be good indicators of

changeability. In their work the authors provided theoretical approach for measuring

changeability and extensibility of aspect oriented software. Moreover, no quantitative

41

changeability measurement model has been provided in this work. In the paper by Sun

et al. (2012) an approach was developed to estimate a software system's changeability

using two steps. The first method was using the formal theory analysis to do change

impact analysis (CIA) that estimated the cascading effect of the proposed alteration

.The author further proposed a new impact metric to demonstrate the capability in the

system to absorb these changes. Study on three case application programs showed the

usefulness of proposed approach of changeability evaluation. Depending on a

questionnaires analysis, the study classified the change impact analysis (CIA)

according to their impact on system changeability. Further based on outcomes, author

proposed guidelines for making design decisions, and provides theoretical guidelines

to improve system changeability. In this study the quantitative measure for

improvement of changeability was not given and theoretical guidelines are not clear

about the cause effect relation between given patterns.

The authors Malhotra et al. (2013) proposed a change proneness prediction model

which predicted classes that showed change proneness by means of object oriented

design metrics. The model proposed was fully based on open source software data

sets. They analyzed and reused the produced estimate model of a chosen project and

mapped it on a separate project thereby reducing to some extent dependency of

training data on development of prediction model.

Measurement of change prone classes of software was done using non liner data

fitting bi square method with robust results by Ankita et al.(2014). They would have

extended their work by using probability density function to give better insight into

the nature of mathematical relationship between the change-proneness and the

factors/random variables that influence it. Moreover, this model was not empirically

42

validated and not applicable in the context. These outcomes though have not had a

wide acceptance and thus, have not been used in practical by the practitioners. In

addition, the model provided by the authors is not sufficient for both structural and

behavioral architecture.

In the work done by Panjeta et al. (2014) authors highlighted changeability as one of

the key characteristics of software maintainability. They theoretically and graphically

tried solving this important subject by proposing a structure that facilitates to evaluate

level of changeability by means of clustering methods (Machine Learning). To

quantify changeability, authors proposed theoretical and graphical approach; but

quantifying changeability through this technique showed high complexity. In this

study, the authors have not given the quantitative measure of software changeability.

However, they have only discussed theoretical approach for measuring software

changeability.

Work done by Sen-Tarng Lai (2014) proposed a model for improving process of plan

change in software project and mitigating development risk. A model called

(WBSPM) i.e. WBS–based Plan changeability was proposed to increase change

capability plan in WBS-based method taking into consideration changeability factors.

This approach did not propose a generic model for changeability at design phase. This

study is largely concerned with recognizing and assessing the factors of changeability

in object oriented software and metrics correlated to the factors, which are been

backed by the case studies. The authors used the source code analysis for

characterizing the software changeability. In this research, authors identify possible

relevant metrics to predict the class changeability and analyzed the approach in

43

theoretical manner only. Moreover, this approach has more emphasis on analysis

phase; design phase has been considered only partially.

In the study done by Rongviriyapanish et al et al. (2016) java code changeability

prediction model was proposed. Authors highlighted a value model for evaluating the

levels of changeability in java program as significant in software development. The

paper proposed a software changeability estimation model that took into account the

metrics involving several appropriate object oriented attributes. The proposed method

presented by using the multi layer perception, as a classifier arrangement and for

training data of java classes from jEdit open source software project. An

approximation of 74.07% was attained and the model could completely divide java

classes with decent changeability level ranging from reduced or acceptable

changeability levels. The proposed java code changeability prediction model

measured changeability at source code level only. Study argued this model improved

maintenance, debugging and hence improves software quality.

After a systematic literature review it comes into observation that there are numerous

approaches available for measuring object oriented software changeability at analysis

and coding phase. However at analysis phase, we only have the requirements and at

design phase only, the complete structure of the software comes into picture.

Therefore, changeability assessment at design phase is much more relevant as

compared to analysis phase and also cannot be compensated during subsequent

development life cycle. Panjeta et al. (2014) proposed theoretical and graphical

approach for changeability assessment at design phase but quantifying changeability

through this technique is very complex. Hence, there is a potential to develop a

systematic solution for changeability evaluation at design phase in SDLC. Therefore,

44

a comprehensive outline and related model to evaluate changeability of object

oriented software with the help of object oriented design properties at design phase

seems highly needed and significant. At analysis phase, we have the functionality

requirement and only at design phase, the complete structure of the software comes

into picture. The lack of software changeability at design phase may be difficult to

overcome throughout ensuing system development life cycle. Hence, there is a

potential to develop a systematic solution for changeability evaluation which is

implemented at design phase of different stages of SDLC. Therefore, a

comprehensive outline and related model to evaluate changeability of object oriented

software with the help of object- oriented design properties at design phase seems

highly needed and significant.

2.5 LITERATURE SURVEY ON STABILITY

This section shows the result of a organized literature review, conducted to collect

evidence on software stability evaluation of object oriented design and development.

To evaluate the stability of software, a developer can follow one of the two

approaches i.e measure stability in terms of single software and consider its stability

values based on interrelationships, among software modules that project the degree of

probability of ripple effects of changes on modules. Component level metrics are used

to evaluate the design stability in this approach. The second approach uses software

evolution history to measure stability across the different version of software.

Architect level metric and program level metric are used to evaluate the differences

among two version of developing software by Jazayeri (2002) and samadzeh (1994).

45

We are following the first approach and calculating stability at design phase. We can

obtain designs stability measures at any level in the design procedure of a software

thus facilitating solution for stability problems initially in the life cycle of software

development. Black(2001), Bahsoon (2004)researched how software design stability

assessment includes an added in depth study of the interface’s of software

components, and an account of the ripple effect as a importance of programs

modification (stability of the program). The possible ripple effect is well-defined as

the entire numbers of assumption complete by another component which invoke a

component whose software stability is being evaluated share global data or file with

component or are invoked by the component. Parts of the programs with lower

stability can then be re-designed to improve the situation.

Though the emphasis of this paper, is on the above discussed first approach as in

traditional software models but for completeness of literature survey this section also

includes literature on evolution stability and architectural stability that cover different

iterations of the software, and across various phases of the life-cycle of software

development.

Chidamber & Kemerer (1994) theoretically suggested some software metrics as good

pointers for the stability, of object oriented design and development, based on

measurement theory and viewpoints of software engineers who were experienced and

after evaluation with regards to standard criterion suggested that these metrics had

desirable properties and could be used for good software design. They clearly

indicated that future research should be done to ascertain this new approach for

object-oriented software design approach in terms of required design features as

against traditional approaches.

46

Li et al (2000) proposed three metrics for the objective of calculating object oriented

software development, project progress and adjustment of project strategy in real time

the researchers also did a study of software design instability that scrutinizes how the

implementation of a particular class can distress its overall design. The work controls,

that around few aspects of object-oriented design and development are fully

autonomous of implementations although other parts are at the mercy of on

implementation. They emphasized that metrics that are developed by Chidamber &

Kemerer cannot quantity all parts of object oriented software design. Instances of

these parts are the modification in the class member, class numbers and between class

inheritance relation. Since this faultiness of C&K metrics, researchers developed these

three metrics namely “system design instability” (SDI), “Class implementations

instability” (CII) and last one “system implementations instability” (SII). The key

objective that keen out in this work is to explain how the data that is collected from

theses metrics can support developers and project manager to correct the project plan.

These metrics were experimentally scrutinized compared to C&K metrics. Authors

found out that SDI and CII assessment of Object Oriented features that are dissimilar

from the features that are assessed by C&K metrics.

Fayad (2003) conversed the notions of, permanent business theme (EBT), business

object (BO) and finally industrial object (IO) and just in what way they can be, used

to shape a stable software design. EBT are those essential thoughts of the software

that continue stable ended a time. BO is outwardly stable over time but might have

interior variations. IO is exterior and unstable object of the software system. The

author, claimed that software design structure fully depended on only these ideas

would decrease re-engineering and therefore produce a stable software design.

47

Unfortunately, in their study the researchers providing only theoretic procedures for

stable designs. Furthermore no measurable stability evaluation model has been

providing in this study.

Work done by Elish et. al. (2010) did the future research on the object oriented design

and development metrics developed by Chidamber and Kemerer, adopting the metrics

suggested by them, as applicant pointers of the software stability of object oriented

design and development. The purpose was to examine there are correlation amongst

these metrics and the design stability for class. The investigational outputs specified

that ‘WMC’, ‘DIT’, ‘LCOM’, ‘RFC’ and, ‘CBO’, metrics are destructively correlated

with the stability of between software class. No correlations were found among

“NOC” metrics and the design stability of between classes.

AlShayeb et.al. (2011) calculated the influence of system refactoring on software

architecture stability and as a outcome suggested the software designers concerned to

optimize their software design for architecture stability to evade via refactoring

techniques that disturb the classes hierarchy. In its place they can usage those

techniques that only affect method levels. Nevertheless, the researcher did not study

the package as the basic part of software architectures in its place attentive on the

classes level. Consequently, the work was incomplete to examine the outcome of

refactoring approaches at acceptable/middle grain level that is fields method and

classes.

Ebad et al. (2015) [6] the researchers present a novel software architecture stability

metrics that quantity inter package call. This study hypothetically validated ASM via

a number of protuberant mathematical properties. Researchers also authenticated the

48

metrics via 2 open source project, “JHot-Draw” and “abstract window” toolkits.

Evaluations of the ASM were exposed to be dependable with the line of codes

variations across the release in the 2 project. Beyond Compare is used to assess the

variations at the source code levels for these 2 project. For instance, research scholars

can use ASM to examine the correlations among module cohesion and module

coupling on software architectural stability. The objective would be to usage such

forecasters initially throughout the source code to forecast the stability of the software

architecture. Regrettably we did not have access to information that would carry out

such a study.

Mamdouh Alenezi (2016) paves the means for investigators to start examining way to

evaluate software architectural quality attribute. Assessment of all these software

qualities is important for this sub area of software engineering. This effort discovers

“stability” and “understandability” of software architectures. The meaning and

significance of software architectures were debated. In what way to assess these

measurements were also broadly presented in this study. Software stability was given

additional emphasis for their key importance and impact on software. Future

guidelines contain devising new metrics to quantity both software architecture

stability.

Our literature survey shows that though there are many approaches to quantifying

stability in overall cycles of SDLC and in evolution software but the approach of

design level object-oriented metrics, to quantify stability of class diagrams still needs

to be quantified as a prerequisite for estimating stability model. It can be inferred

from the extensive literature survey on stability that though many approaches on

49

defining stability have been given but there exists no complete model to measure

stability of Object Oriented software at design phase of SDLC.

2.6 SIGNIFICANT CONCLUSIONS

The significant conclusions that can be drawn from the above detailed literature

review is:

 Maintainability though an extremely important attribute of software quality, is

desirable by all organizations but there is still no explicit focus in the industry on it in

the development of projects. Appropriate processes, guidelines and tools needed for

maintainability evaluation are still not available.

 Measuring maintainability in the early phase of SDLC like the design phase will help

improve the design of software, which in turn will improve the quality of software.

Maintainability is essentially a design issue and thus need to be handled at design

phase.

 To get consistent and accurate measures of maintainability for Object Oriented

software, it is essential to identify factors affecting maintainability. Defining a

universally acceptable set of maintainability factors is not possible, but by extensive

literature survey we have identified a key set of design attributes for maintainability

measurement.

 Very few earlier approaches to measure software maintainability were validated

empirically. A more organized understanding of maintainability measurement is yet to

be evolved.

50

2.7 SUMMARY

The above literature survey shows that few models for measuring maintainability at

design phase have been developed. All of these models show varying accuracy in

measuring maintainability of Object Oriented software .Few of these models have

been proposed but not validated. Out of these the model provided by Rizvi et.

al.(2010) has shown better results than the rest and the authors have also validated

their model. Rajendra et.al (2015) has also developed a model for measuring

maintainability with good accuracy but they have not validated their model. A survey

of the relevant literature also indicated that more work is done at measuring

maintainability at the later stages of SDLC.

 Having maintainability models at an early stage is thus still needed. To do so we have

followed the systematic approach of identifying sub factors of maintainability and

indentifying design properties and metrics of Object Oriented systems for estimating

these sub factors. We in our work propose to develop and validate models for each of

these sub factors and then maintainability measurement model for design phase for

Object Oriented systems and also provide comparative study with relevant work.

In the next chapter we develop a model for the first internal attribute of

maintainability i.e. changeability.

51

CHAPTER 3

CHANGEABILITY EVALUTION MODEL (CEMOOD)

3.1 INTRODUCTION

Changeability as given by ISO-9126 can be defined as the ability of the software to

support a required or specific modification that needs to be implemented. Within the

constraints of requirement specifications, it facilitates the designers with continuous

evaluation and ratifications in the maintenance of software.

Chaumun et.al. (2002) in their work state that changeability is a significant key

characteristic for maintainability analysis and evaluation for deliverance of good

quality and cost effective maintainable software.

The constitution of ISO/IEC 9126 (2001) quality model proposed by software

improvement group (SIG) used a three layered approach to indicate steps for

developing quality models. Rongviriyapanish et.al. (2016) described that firstly

quality sub attributes needs to be identified, secondly the system properties associated

with them should be defined and lastly the source code measures were identified. In

this context changeability, can be measured in terms of system properties like

inheritance, encapsulation, coupling, polymorphism as given by Bagheri et. al. (2011),

Kanaellopoulos et. al.(2008) and many more as described in the table 3.1 below:

52

Table 3.1 Changeability and related Object Oriented design factors

Design Properties

E
nc

ap
su

la
tio

n

 C
ou

pl
in

g
 In

he
ri

ta
nc

e

Po
ly

m
or

ph
is

m

Author/Study
Changeability

Li &Offutt (1996) X X X

Godin et. al (2000) X

Arisholm et. al (2000) X

A Chaumun et. al (2002) X X

Heitlager et. al. (2007) X X

Riaz et.al (2009) X X

Dubey et.al (2011) X X X X

A Hincheeranan (2012) X X X X

Y Aylew et. al (2013) X

Al Dallal et. al (2013) X

Malhotra et. al (2013) X X X

Ankita et. al. (2014) X X X X

Few changeability models have been proposed based on different quality attributes

and code metrics of Object Oriented systems as discussed in by Li and Offutt (1996),

Godin et. al (2000), Arisholm et. al (2000), A Chaumun et. al (2002),Heitlager et. al.

(2007),Riaz et.al (2009) ,Dubey et.al (2011),A Hincheeranan (2012),Y Aylew et. al

(2013),Al Dallal et. al (2013) and Malhotra et. al (2013).

These models were proposed at different phases of SDLC. However, none of the

models designed at the design phase have been empirically validated .This chapter

53

here highlights the importance of changeability broadly and also as an important

contributor of software maintainability. In this chapter, a correlation between the

major attributes of object oriented design viz. encapsulation, coupling, inheritance,

polymorphism and changeability has been ascertained. A changeability evaluation

model using multiple linear regression has been proposed for object oriented design.

Finally, the validation of the proposed changeability evaluation model is made known

by means of experimental runs using data from real life projects and the results show

that the model is highly significant.

This rest of the chapter is structured into subsection as follows: Section 3.2 describes

and establishes relationship between Changeability and Object Oriented Design

Properties. In Section 3.3 we develop a model for evaluating changeability called

(CEMOOD). Section 3.4 shows the Statistical Significance between Changeability and

Design Characteristics of Object Oriented Software. In Section 3.5 we have

empirically validated our Changeability Evaluation Model (CEMOOD) by comparing

calculated values of changeability to actual values of changeability received from real

life projects. Section 3.6 gives a Summary of the chapter.

Our next section establishes the relationship between the considered design properties

of object oriented software and quality attribute changeability.

3.2 ESTABLISHING RELATIONSHIP BETWEEN CHANGEABILITY AND

OBJECT ORIENTED DESIGN PROPERTIES

A wide-ranging review of object oriented design and development was done in

Chapter 2 - Literature review and from studies done by McCall et.al. (1977), Land

(2002), Dubey et.al(2012), Chaumun et. al. (2002), Ayalew and Mugni(2013),

54

Heitlager et. al. (2007), Dallal(2013), Elish and Elish(2009), Kiewkanya et. al. (2004),

Genero et.al (2003) , Li and Ottfutt(1996) and many more, to develop a foundation to

establish a relation between design properties and one of the quality attributes i.e.

changeability. In view of this fact, a relation figure is proposed between the major

properties of object oriented design and changeability as shown in Fig. 3.1. The

mapping puts in place a relative impact correlation between changeability, object

oriented design properties and the related design metrics. Out of the five major object

oriented properties viz. encapsulation, coupling, inheritance, polymorphism and

cohesion, we have used only four as some researchers like Kabaili et.al (2001)

concluded that cohesion metrics is not a good indicator of changeability.

Fig. 3.1: Relation among Changeability, object oriented design properties and metrics.

3.3 CHANGEABILITY EVALUATION MODEL (CEMOOD)

In this section using the relationship established in Fig. 3.1, we propose a

changeability evaluation model. We have implemented the method of multiple linear

regression (MLR) to help us develop a model for Changeability.

55

Changeability=ß+ A1× Encapsulation + A2× Coupling + A3× Inheritance + A4×

Polymorphism Eq. (3.1)

The datasets for developing and validating Changeability model is acquired from

[Appendix I-Table I.1] that has been collected through the class diagrams. It includes

a set of twenty (20) projects (indicated from P1 to P20) along with the value of

metrics of each of these. Along with this, we have the actual mean values of different

ratings by experts of Software Changeability for these projects. These are called

‘Known Value’ here in this chapter.

Table 3.2 shows the coefficients for Changeability evaluation model. We use the

values we get from the unstandardized coefficients component of the table 3.2 to help

develop the regression equation (3.2).

Table 3.2: Coefficients for Changeability Evaluation Model

Changeability

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig. B Std. Error Beta

1 (Constant) 8.477 2.906 2.917 .033

Encapsulation -.367 .452 -.140 -.813 .453

Coupling -1.530 .481 -.522 -3.182 .024

Inheritance -1.945 1.288 -.250 -1.510 .191

Polymorphis
m

1.923 .512 .643 3.759 .013

56

Using SPSS to calculate the coefficients, the final changeability model that we

derived is given below:

Changeability = 8.477 - 0.367× Encapsulation -1.53 × Coupling -1.945 ×

Inheritance + 1.923 ×Polymorphism Eq. (3.2)

The results of summarized model as shown in Table 3.3 are useful when calculating

multiple regression. The coefficient determinant (R) with a value of 93.4% exhibits a

very strong relation between the independent variables and the respective dependent

variable. The value of this coefficient when squared i.e. R (square) from the table

depicts the coefficient of determination. It refers to the ratio of total variance in

changeability by all four independent variables. The value of both R2 and adjusted R2

is very encouraging. With the help of ANOVA analysis a significant regression

equation was found (F (4, 5) = 8.53, P<0.019) with R2 of 0.934 from the model

summary table.

Table 3.3: Changeability Evaluation Model Summary

Model(Summarized)

Model R R Square R Square

(Adjusted)

Standard Error of

the Estimate

1 .934a .872 .770 .60873

a. Predictors: (Constant), Polymorphism, Coupling, Inheritance,

Encapsulation

The quality factor changeability increases with for each -0.367 units of

encapsulation,-1.53 units of coupling,-1.945 units of inheritance and 1.923 units of

57

polymorphism. Hence encapsulation, inheritance, coupling and polymorphism are

significant parameters of changeability.

The results of this trial experiment in assessment of changeability meet expectations

and are very promising to attain maintainability index of object oriented design for

small cost Software maintenance.

Our next section using a group of projects statistically establishes the correlation

between design properties of Object Oriented software and Changeability.

3.4 STATISTICAL SIGNIFICANCE BETWEEN CHANGEABILITY AND

DESIGN CHARACTERISTICS OF OBJECT ORIENTED SOFTWARE

The applications that are deployed in displaying the statistical significance among

Changeability and object oriented design properties have been taken from [Appendix

I-Table I.2]. We categorized the applications as: System G, System H and System I.

All the systems are commercial software projects implemented in C++ with the

number of classes and grouped as shown in Table 3.4. (Detail of the software Projects

in each cluster is given in Appendix I- Table I.2)

Table 3.4: Group and Projects for proposed Evaluation model CEMOOD

Group Projects

System G 5

System H 5

System I 5

58

Table 3.5 gives the descriptive statistics for System G and Table 3.6 gives the

correlation analysis for System G.

Table 3.5: Descriptive Statistics for System G

Minimum Maximum Mean

Changeability
6.00 9.80 7.7000

Encapsulation
2.50 3.60 3.2800

Coupling
1.30 2.70 1.9400

Inheritance
.40 .80 .6000

Polymorphism
1.90 2.90 2.4000

Table 3.6: Correlation Analysis for System G

C
ha

ng
ea

bi
lit

y

En
ca

ps
ul

at
io

n

C
ou

pl
in

g

In
he

rit
an

ce

Po
ly

m
or

ph
is

m

Changeability 1 .906 .949 .868 .996

Encapsulation .906 1 .927 .990 .882

Coupling .949 .927 1 .887 .920

Inheritance .868 .990 .887 1 .842

Polymorphism .996 .882 .920 .842 1

59

Table 3.7: Descriptive Statistics for System H

Minimum Maximum Mean

Changeability
5.90 9.80 8.1000

Encapsulation
2.50 3.80 3.2000

Coupling
1.30 2.40 1.7800

Inheritance
.40 .90 .6800

Polymorphism
1.90 2.90 2.4600

Table 3.8: Correlation Analysis for System H

C
ha

ng
ea

bi
lit

y

En
ca

ps
ul

at
io

n

C
ou

pl
in

g

In
he

rit
an

ce

Po
ly

m
or

ph
is

m

Changeability 1 .930 .929 .880 .975

Encapsulation .930 1 .820 .890 .868

Coupling .929 .820 1 .895 .870

Inheritance .880 .890 .895 1 .753

Polymorphism .975 .868 .870 .753 1

60

Table 3.9: Descriptive Statistics for System I

Minimum Maximum Mean
Changeability

7.40 9.80 8.8000

Encapsulation
2.50 4.10 3.2400

Coupling
1.30 2.70 1.8200

Inheritance
.40 1.20 .8000

Polymorphism
1.80 2.90 2.3000

Table 3.10: Correlation Analysis for System I

C
ha

ng
ea

bi
lit

y

En
ca

ps
ul

at
io

n

C
ou

pl
in

g

In
he

rit
an

ce

Po
ly

m
or

ph
is

m

Changeability 1 .919 .907 .925 .950
Encapsulation .919 1 .998 .869 .826

Coupling .907 .998 1 .851 .806
Inheritance .925 .869 .851 1 .982
Polymorphism

.950 .826 .806 .982 1

61

Table 3.11: Correlation Analysis Summary

C
ha

ng
ea

bi
lit

y
×

En
ca

ps
ul

at
io

n
 C

ha
ng

ea
bi

lit
y×

C

ou
pl

in
g

 C
ha

ng
ea

bi
lit

y
×

In
he

rit
an

ce

C
ha

ng
ea

bi
lit

y
×

Po
ly

m
or

ph
is

m

System G .906 .949 .868 .996

System H .930 .929 .880 .975

System I
.919 .907 .925 .950

From the Table 3.11 after summary of the outcome of the correlation study it

can be inferred that for Changeability evaluation model, there exists a high

correlation between changeability and properties of Polymorphism,

Coupling, Inheritance, Encapsulation for all the systems. The value of

correlation ‘r’ ranges between ±1, positive value of ‘r’ in Table 3.11, indicates

positive correlation between the two variables. The value of ‘r’ near to +1

specifies high measure of correlation between the two variables in above

Table 3.11.

In the next section using a different subset of projects, empirical validation of

Changeability Evaluation Model (CEMOOD) is done.

62

3.5 EMPIRICAL VALIDATION OF CHANGEABILITY EVALUATION

MODEL (CEMOOD)

The empirical validation is an important phase of proposed research. To verify

our proposed model we empirically validate our model. This part of study

focuses on the way the model proposed above is able to evaluate the

Changeability calculated in object oriented software(s) at SDLC design stage.

This experimental validation exists as a crucial step of proposed research to

estimate Changeability Evaluation Model (CEMOOD) for better and high level

adaptability. Therefore, with this objective validation of the proposed

Changeability Evaluation Model (CEMOOD) is done using experimental tests.

In order to validate the developed Changeability Evaluation Model the

projects viz. P1, P2, P3, P4, P5, P6, P7, P18, P19 and P20 were taken from

Appendix I- Table I.1. The known Changeability value of the provided

projects class diagram is shown in Table 3.12. Table 3.13 shows the

corresponding known changeability ranks of the values of Table 3.12.

Table 3.12: Known Changeability Value

P1 P2 P3 P4 P5 P6 P7 P18 P19 P20

7.8 6.9 8.1 7.4 8.5 7.2 7 9.1 8.9 9.3

Table 3.13: Known Changeability Rank

P1 P2 P3 P4 P5 P6 P7 P18 P19 P20

5 1 6 4 7 3 2 9 8 10

63

Using the similar set of data for the given projects class diagram Changeability

was calculated using proposed Changeability evaluation model and the results

are shown in Table 3.14.

Table 3.14: Calculated Changeability Value Using Proposed Model CEMOOD

P1 P2 P3 P4 P5 P6 P7 P18 P19 P20

2.5 2.2 3.8 3.4 3.7 1.4 0.4 4.4 6.7 5.8

Table 3.15: Calculate d Changeability Rank Using Proposed Model CEMOOD

P1 P2 P3 P4 P5 P6 P7 P18 P19 P20

4 3 7 5 6 2 1 8 10 9

Charles Spearman’s rank relation rs was used to test the significance of

correlations calculated amidst Ranks of Changeability via proposed model and

the ranks Known in it.

The ‘rs’ was calculated using the formula given as under:

Eq. (3.2)

 ‘d’ = difference that exists in Calculated Rank and Known Rank of

Changeability.

‘n’ = total quantity of Projects taken in conducting tests.

64

Table 3.16: Computed Rank, Actual Rank and their Relation

Project(s)
P1 P2 P3 P4 P5 P6 P7 P18 P19 P20

Computed Ranks 4 3 7 5 6 2 1 8 10 9

Known Ranks 5 1 6 4 7 3 2 9 8 10

d2 1 4 1 1 1 1 1 1 4 1

∑d2 16

rs Calculated 0.90303

rs > ±.781

The correlation value among calculated Changeability ranks using proposed

model CEMOOD and known ranks is shown in Table 3.16 above. There appears

to be a very strong positive correlation rs value (+0.903) with a p=0.001

(99.9% statistical significance level) as shown by fig 3.2 scatter graph where

data Set A represents the known changeability value and data set B are the

calculated values by our changeability evaluation model CEMOOD.

Fig 3.2. Graph showing Spearman’s rank correlation between known and calculated

values of changeability.

65

Correlation value rs meets the expectations standard showing high confidence,

i.e. of 99%.So we can say there is a strong correlation between the data set

calculated from our changeability evaluation model (CEMOOD) and actual

values of changeability .

This study undoubtedly shows that the Changeability model is significant. In

the end of this chapter we provide a comprehensive conclusion of our

proposed model.

3.6 SUMMARY

This chapter displays the significance of Changeability and the correlation it

has with the design properties of Object Oriented systems. These design

properties are encapsulation, coupling, inheritance and polymorphism. The

correlation was established using multiple linear regression formula and a

Changeability Evaluation Model (CEMOOD) is developed. The results obtained

statistically confirm the significance and acceptability of the proposed model.

The proposed model has been validated empirically via experimental test. The

real-world validation of the Changeability model accomplishes that developed

model is highly dependable, acceptable and significant. The chapter concludes

that there is a high correlation between Changeability and design properties.

In the next chapter, we will discuss about Stability Evaluation Model.

66

CHAPTER 4

STABILITY EVALUATION MODEL SEMOOD

4.1 INTRODUCTION

Stability can be defined as the responsiveness to change of a given system on the

negative effects that may be triggered by these system changes [ISO-9126].

According to this quality assurance standard of ISO/IEC 9126, stability is well-

defined as the point to which the software module, can avoid unpredicted effect from

the modifications of the software. This is supported by the definition given by

Black(2000). As discussed in literature review, Stability is an important key

contributor for maintainability evaluation at design phase. Stability being significant

software quality indicator, its correct assessment leads to improving the software

maintenance process as defined by ISO-9126 (2001). Stability continually has a key

impact in delivering maintainable and reliable software within an acceptable time and

budget. Along with this, emphasizing on stability in early phase of software

development cycle further simplifies maintenance process during maintenance phase

and after implementation. The ability to only reengineer the required part in such a

way that the rest of the software modules continue unchanged is what makes stability

an important maintainability factor as discussed by Alshayeb and Oman (2011).

If the stability factor is not as per the desirable standard it cascades the impact of any

modifications throughout the design, thereby increasing the possibility of generation

of new errors and affecting software maintainability. This in turn results in increase in

67

costs and effort than the actual earlier estimated costs as discussed by Ebad and

Ahmed (2015) and Raemaekers(2012).

The assessment of stability using design properties is more relevant and its

justification indicates the valid influence of functional and structural information of

object oriented design and development. L. Yu (2009) and Fayad (2002) discussed

that regardless of the fact stability is vital and extremely noteworthy aspect for system

development cycle it is poorly managed. Thus, we can say that the risks we face in

software stability due to unexpected effects of modifications are a major concern and

it affects the overall maintainability costs of the software.

In this chapter correlation between object oriented design properties and Stability has

been established. A Stability Evaluation Model (SEMOOD) has been proposed here for

Object Oriented Design by using multiple linear regression. Consequently, the

proposed model has been validated empirically using experimental runs.

The outline of this chapter is described as Section 4.2 describes the mapping between

the quality attribute stability and object oriented design properties viz. Encapsulation,

Coupling and inheritance. Section 4.3 explains the development of Stability

Evaluation Model (SEMOOD). Section 4.4 establishes the correlation and significance

between different properties using statistical methods. Section 4.5 discusses empirical

validation of our model. Section 4.6 summarizes the whole chapter.

4.2 MAPPING BETWEEN STABILITY AND DESIGN PROPERTIES

A broad analysis of object oriented design properties was discussed in Chapter 2 –

Literature Review and from work done by researchers and standards like Heitleger

68

et.al. (2007), Yau and Chang(1984) , ISO (2001), Genero et. al. (2003), Alshayeb et.

al (2011), Hagemeister and Oman (1992) and has been used to establish a relation

between design properties and Stability. From this extensive research we were able to

decide which metric or attribute is highly considerable to the development of our

model. Along with the literature survey the data from software companies compiled

by experts was also used as a directive for choosing these properties for the model. A

correlation amongst object oriented design properties, design metrics and Stability as

shown in Fig. 4.1.

Fig. 4.1: Mapping among Stability, Object Oriented Design Properties

In the next section we discuss the proposed Stability Evaluation Model (SEMOOD).

4.3 STABILITY EVALUATION MODEL (SEMOOD)

We have used the method of multiple linear regression to develop a measurement

model for stability.

The data values for developing stability model and validating the developed model is

acquired from Appendix I - Table I.1 that has been together from the class diagrams.

It contains a group of twenty (20) class diagrams (designated from P1 up to P20)

69

laterally with the values of metrics of each of these. Along with this, we have the

rating by expert of Software stability for these projects respectively. These are called

“Known Values” here in this research work. For development of our model we have

used values of projects P1 to P7 and P18 to P20.

Stability = ß + A1 × Encapsulation + A2 × Coupling + A3 × Inheritance

 Eq. (4.1)

The respective coefficients values are calculated via SPSS and a stability model is

developed. Equation (4.1) signifies the relations amongst stability and the object-

oriented design properties as evaluated.

Table 4.1 contains the coefficients for Stability Evaluation Model (SEMOOD). The

unstandardized coefficients from the table have been used as coefficients in the

regression equation (4.2) to develop our model. In this table the Standardized Beta

Coefficients specify the comparative measure of the contribution of each variable to

the Stability model.

Table 4.1: Coefficients for Stability Evaluation Model

70

Stability = 5.562 - 1.034 × Encapsulation + .013 × Coupling + 1.006 × Inheritance

 Eq. (4.2)

The Model Summary Table 4.2 output is most valuable when performing multiple

linear regressions. Capital R is the multiple correlation coefficients that tell us how

powerfully the multiple independent variables are related to the dependent variable. R

Square is also very high and gives us the coefficient of determination which further

supports the correlation. A value of R close to 92% is obtained, thus from this table

we can conclude that encapsulation, coupling and inheritance i.e. the independent

variables are strongly correlated to the dependent variable viz. stability. With the help

of ANOVA analysis a significant regression equation was found (F (3, 6) = 4.826,

P<0.049) with R2 of 0.926 from the model summary table. The quality factor stability

increases with for each -1.034 units of encapsulation, 0.013 units of coupling and

1.006 units of inheritance. Hence encapsulation, inheritance and coupling are

significant parameters of stability.

Table 4.2: Stability Evaluation Model Summary

In the next section we establish the statistical significance between different

considered variables.

71

4.4 STATISTICAL SIGNIFICANCE BETWEEN STABILITY AND OBJECT

ORIENTED DESIGN PROPERTIES

To justify the correlation of Stability with object oriented design properties, statistical

test are performed. The applications that are used to perform statistical test have been

taken from Appendix I-Table I.1. We labeled the applications as: System D, System E

and System F. Object oriented technology is applied in all of these commercial

software[s] with the number of classes as shown in Table 4.3. (Detail of the Projects

in each group is given in Appendix I-Table I.3)

Table 4.3: Group and Projects for Proposed SEMOOD

Group Projects

System D 4

System E 4

System F 4

Table 4.4: Detailed Statistics for System D

 Minimum Maximum Mean

Stability 6.80 9.30 7.8500

Encapsulation 2.90 3.60 3.3750

Coupling 1.30 2.70 2.1500

Inheritance .50 .90 .6750

72

Table 4.5: Correlation Analysis for System D

 Stability Encapsulation Coupling Inheritance

Stability 1 .979 .932 .973

Encapsulation .979 1 .967 .926

Coupling .932 .967 1 .917

Inheritance .973 .926 .917 1

Table 4.6: Descriptive Statistics for System E

 Minimum Maximum Mean

Stability 7.00 8.60 7.8250

Encapsulation 2.50 3.50 3.2000

Coupling 1.30 2.20 1.7500

Inheritance .40 .80 .6250

Table 4.7: Correlation Analysis for System E

 Stability Encapsulation Coupling Inheritance

Stability 1 .850 .878 .881

Encapsulation .850 1 .868 .700

Coupling .878 .868 1 .947

Inheritance .881 .700 .947 1

73

Table 4.8: Descriptive Statistics for System F

 Minimum Maximum Mean

Stability 6.90 8.50 7.6750

Encapsulation 3.50 4.10 3.7250

Coupling 1.30 2.70 1.9750

Inheritance .60 1.00 .7500

Table 4.9: Correlation Analysis for System F

 Stability Encapsulation Coupling Inheritance

Stability 1 .868 .917 .954

Encapsulation .868 1 .931 .904

Coupling .917 .931 1 .992

Inheritance .954 .904 .992 1

Table 4.10: Correlation Analysis summary

 Stability x

Encapsulation

Stability x

Coupling

Stability x

Inheritance

System D .979 .932 .973

System E .850 .878 .881

System F .868 .917 .954

74

Table 4.10 displays the results obtained by applying correlation analysis on stability

Evaluation Model (SEMOOD). For the considered three systems viz. D, E and F, the

properties of encapsulation, coupling and inheritance are significantly well correlated

with stability. The values of r in this table are close to +1 which signifies that there

exists a positive and high degree of correlation between the two variables.

No study or development of a model is complete unless we apply some methods of

validating our model. The next section in details validates our model using

experimental tryouts.

4.5 EMPIRICAL VALIDATION OF STABILITY EVALUATION MODEL

No study or development of a model is complete without proper validation of the

proposed model. This requirement is for all engineering disciplines including software

and computer engineering.

In this section we analyze how well our proposed model (SEMOOD) estimates the

stability values as compared to the known of each metric collected from the ten

projects viz. (P8 to P17). The mean values of different rating by experts of software

stability for these projects are used for comparison using Charles spearman’s rank

relation i.e in order to validate the, proposed stability evaluation Model the projects

viz. P8 to P17 were taken from Appendix I- Table I.1.

An experimental validation of the developed Stability evaluation model SEMOOD

(equation 4.2) has been carried out with the Appendix I-Table I.1.

The known Stability value and rank for the given projects class diagram is publicized

in Tables 4.11 and 4.12.

75

Table 4.11. Known Stability Value

P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

6.7 7.2 7.9 7.0 8.3 6.8 8.6 7.4 9.3 6.9

Table 4.12. Known Stability Rank

P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

1 5 7 4 8 2 9 6 10 3

Using the similar group of data for the given project class diagram Stability was

calculated using developed Stability evaluation model and the results are publicized in

Table 4.13.

Table 4.13 Calculated Stability Value Using Proposed Model SEMOOD

P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

2.1534 2.6637 3.2988 2.5635 2.6758 2.3777 3.8065 2.573 3.5 2.3591

Table 4.14 Calculated Stability Rank Using Proposed Model SEMOOD

P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

1 6 8 4 7 3 10 5 9 2

Table 4.15: Computed Rank, Actual Rank and their Relation

Projects
Stability
Ranking

P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

Computed
Ranks

1 6 8 4 7 3 10 5 9 2

Known
Ranks

1 5 7 4 8 2 9 6 10 3

d2 0 1 1 0 1 1 1 1 1 1

∑d2 8

rs Calculated 0.951515

rs > ±.781

76

(Charles Spearman’s) Rank relations “rs” was used to assess the importance of

correlations between “calculated Ranks of Stability” via proposed model and its

“Known Ranks”.

The ‘rs’ was calculated via the formulation specified as under:

Spearman’s- Coefficient of Correlation (rs) –

rs = 1 - 6Σd2 -1.0≤ rs ≤+1.0

 n (n2-1) Eq. (4.3)

‘d’=difference amongst “Calculated Rank” and “Known Rank” of Stability and ‘n’ =

Total Projects used in the research.

The correlation value amongst calculated “Stability ranks” using developed model

SEMOOD and “known ranks” are shown in Table 4.15. Correlation value rs

unquestionably show that the Stability model is very important and highly significant

with a confidence level of 99%. There appears to be a very strong positive correlation

rs value (+0.9515) with a p=0.001 (99.9% statistical significance level) as shown by

the graph in fig 4.2 where data set A is known values of stability and data set b

represents calculated values of stability using SEMOOD.

Fig 4.2. Graph showing Spearman’s rank correlation between known and calculated

values of stability.

77

Thus we can infer that there is a strong correlation between the data set calculated

from our stability evaluation model (SEMOOD) and actual values of stability.

It can thus be inferred that with no loss of generality our proposed Stability

Evaluation Model (SEMOOD) is reliable and relevant in the current perspective.

The next section gives a summary of the above sections.

4.6 SUMMARY

This chapter shows the significance of Stability and its relationship with object

oriented design properties viz. encapsulation, inheritance and coupling. Stability is

one of the most noteworthy factors for evaluating maintainability of object oriented

design. This chapter proved the significances of Stability and its relationship with

various object oriented design properties. Further, study developed a Stability

evaluation model with correlation establishment among Stability and object oriented

design properties. Subsequently, developed model was validated empirically by

means of investigational tryout. The applied authentication on the stability model

accomplishes that the stability model is most highly significant. The work concludes

that there is a high correlation between Stability and design properties.

In the next chapter, we will discuss about Maintainability.

78

CHAPTER 5

MAINTAINABILITY EVALUATION MODEL MMOOD

5.1 INTRODUCTION

According to IEEE standard maintainability can be defined in terms of how easy it is

for software to be repaired, provide improved performance and adapt to changing

environments. As given in early research by Somerville et. al. (1992), maintainability

is a key attribute for well designed software. Hayes and Zaho (2005), Aggarwal et. al.

(2005), Misra (2005) and Zhou and Leung(2007) in their study have shown that

software maintainability can be enhanced by controlling Object Oriented design

properties like coupling, cohesion, encapsulation, polymorphism and inheritance.

Evaluating maintainability provides guidelines that help in significant decrease in

terms of cost and time in the various stages of software development and components,

quality control and quality assurance as discussed in the research work of Aggarwal

et.al. (2005), Dallal and Jehad (2013), Sommerville (1992), Boehm et. al. (1978),

Kiewkanya et. al. (2004), Lee and Chang (2014), McCall et. al. (1977) and Grady et.

al. (1987). The calculation of maintainability at a later stage of SDLC as discussed by

DiLucca et.al. (2004), Li et. al. (2006) and Elish (2009) often results in delayed

reception of crucial information therefore causing a holdup in response and

implementation about changes in software design. This results in an increase in terms

of cost and additional work. In their study, Singh et.al. (2014) and Dubey et.al. (2012)

showed that a preference to transform the design so as to recover maintainability after

79

the coding may turn out to be more costly and prone to errors. Consequently, early

estimation of maintainability in the software development cycle may improve design

quality and decrease maintenance efforts and cost as reviewed by Hincheeranan and

Rivepiboon (2012), Ping(2010), Boehm et. al. (1978), Aggarwal et. al. (2006),

Malhotra and Chug(2016) .

Many models for maintainability have been proposed from time to time for measuring

maintainability as shown in Table 2.1 in chapter2. These models have been defined at

various phases of SDLC. Approaches used for defining the measures for these

maintainability models along with their limitations and shortcomings are also

discussed in detail in Chapter 2 here. Therefore we can conclude for researchers,

quality controllers and programmers continuous effort for planning and evaluation of

maintainability in design phase of the software development life cycle is thus of

inevitable importance.

Taking these facts into consideration our research work is thus focused on evaluation

of maintainability at design stage to deliver quality oriented maintainable software.

Also after relevant study the quality characteristic of maintainability has been refined

into its important sub-characteristics that have significant contribution in

maintainability evaluation at design phase of software development cycle. From the

analysis of study done by Hordijk et. al. (2005), Khan and Mustafa(2004), Genero

et.al. (2003)Rizvi and Khan(2010) Maurya and Shankar(2012) and all others

mentioned in Table 2.2 of literature survey ,it can be concluded that Changeability

and Stability are the two most significant factors affecting software maintainability

evaluation.

80

 This chapter proposes a Maintainability Evaluation Model called MMOOD that works

at design phase of system development life cycle using multiple linear regression

method. Furthermore, statistical test is performed to justify the correlation of

Maintainability with its key contributors Changeability and Stability. The developed

model has been validated using empirical tryout. In conclusion, it includes

comparative analysis between our proposed maintainability model MMOOD and

related existing model and summary.

5.2 MAINTAINABILITY EVALUATION MODEL DEVELOPMENT

The steps to develop Maintainability Evaluation Model MMOOD are as explained

below.

• Identification of key factors of object oriented software that have significant

and positive influence on maintainability evaluation at design phase of

software development life cycle as discussed in Chapter 2 here. The factors

were identified as Changeability and Stability.

• Identification of Object oriented design properties related to Changeability

Viz. Polymorphism Encapsulation, Inheritance and Coupling. Stability viz.

Encapsulation , Inheritance and Coupling were identified as discussed in

chapter 2 here.

• Development of changeability evaluation model (CEMOOD) in terms of

Object Oriented properties as shown in chapter 3 here.

 • Development of stability evaluation model (SEMOOD) in terms of Object

Oriented properties as shown in Chapter 4 here.

• Development of maintainability evaluation model (MMOOD) in terms of

changeability and stability is presented in this paper.

81

Taking into consideration the association between the maintainability factors

and design properties of Object oriented software, comparative importance of

individual factors that have major influence on software maintainability at

design phase is adjusted proportionally (Fig. 5.1).

Fig 5.1 shows the relationship between maintainability, design properties viz.

Changeability and Stability and design metrics.

Fig 5.1: Relating Design Properties with Key Factors of Maintainability

In order to develop a model for Maintainability Evaluation, a Multiple Linear

Regression Technique has been used to get the coefficients as explained by Gupta

(1983). This system gives the association among dependent variable and multiple

independent variables. Multivariate linear

equation is given below, in Eq. (5.1) which is as follows.

Y=a0+a1X1+a2X2+a3X3+-- -- -- -+an Xn Eq. (5.1)

Where,

• Y: Dependent Variable.

• X1, X2, X3--------Xn: Independent Variables.

82

• a1, a2, a3--------an.: Respective Coefficients.

• a0: Intercept.

The following Multiple Linear Regression equation has been established:

Maintainability = α0 + ß1 × Changeability + ß2× Stability Eq. (5.2)

To develop and validate this model the data related to 20 projects was collected from

the Industry. The projects were numbered P1 to P20. This data contains the evaluated

maintainability value through ten Industry experts named as Evaluators. For

maintainability estimation model and to determine the coefficients of Eq. (5.2), the

data (P1, P2, P3, P4, P5, P6, P7, P8, P9, and P10) as shown in Appendix II-Table II.1,

from industry was used and for this we considered the maintainability value given by

Evaluator 1. Using SPSS, correlation coefficients are calculated and proposed model

MMOOD for Maintainability Evaluation is accordingly formulated as specified below

in Eq. (5.3).

Maintainability = 4.467+ .190× Changeability -.112× Stability

 Eq. (5.3)

Table 5.1 displays the coefficients value for Maintainability Evaluation Model

MMOOD. The un-standardized coefficients part of the result gives us the values that we

want in order to write the Eq. (5.3). The Standardized Beta Coefficients give a

measure of the influence of each variable to Maintainability.

Table 5.1: Coefficients values for Proposed Maintainability Evaluation Model

Model

Unstandardized

Coefficients

Standardized

Coefficients t Sig.

83

B Std. Error Beta

1 (Constant) 4.467 .513 8.700 .000

Changeability .190 .042 .783 4.532 .003

Stability -.112 .091 -.213 -1.232 .258

a. Dependent Variable: Maintainability

The Maintainability Evaluation Model summary results as shown in Table 5.2 are

highly significant when performing multiple regression. Capital R is the correlation

coefficient that shows correlation between the multiple independent variables and the

dependent variable. The obtained value of R = 0.949 shows a strong correlation

between the considered independent variables, changeability and stability with

maintainability. R Square provides the coefficient of determination. It refers to the

ratio of total variance in changeability by all four independent variables. The value of

both R2 and adjusted R2 are also very encouraging. With the help of Anova analysis a

significant regression equation was found (F (2, 7) = 31.550, P<0.000) with R2 of

0.949 from the model summary table. The quality factor maintainability increases

with for each .190 units of changeability and -.112 units of stability. Hence

changeability and stability are significant parameters of maintainability.

84

Table 5.2: Proposed Maintainability Evaluation Model Summary

Model R R Square Adjusted R Square
Std. Error of the

Estimate

1 .949a .900 .872 .23408

a. Predictors: (Constant), Stability, Changeability

The following section establishes a statistical correlation between our two quality sub-

attributes viz. changeability and stability with our quality attribute maintainability.

5.3 STATISTICAL SIGNIFICANCE BETWEEN MAINTAINABILITY,

CHANGEABILITY AND STABILITY

To justify the correlation of dependent variable maintainability with independent

variables changeability and stability, statistical tests are accomplished. The

commercial applications that are used to complete statistical assessment are presented

in Appendix II-Table II.2. We grouped the applications as: System A (with-3

projects), System B (with-3 projects) and System C (with-3 projects). All the systems

are commercial software applications, implemented using object oriented technology.

Table 5.3 provides the descriptive statistics for System-A and Table 5.4 provides the

correlation analysis for System-A.

85

Table 5.3: Descriptive Statistics for System A

 Minimum Maximum Mean

Maintainability 4.90 6.90 5.7666

Changeability 6.00 9.80 8.2000

Stability 6.80 8.30 7.5000

Table5.4: Correlation Analysis for System A

 Maintainability Changeability Stability

Maintainability 1 .983 .993

Changeability .983 1 .954

Stability .993 .954 1

Table 5.5 provides the descriptive statistics for System-B and Table 5.6 provides the

correlation analysis for System-B.

Table 5.5: Descriptive Statistics for System B

 Minimum Maximum Mean

Maintainability 5.10 7.30 5.9000

Changeability 7.40 8.80 8.2.666

Stability 6.90 8.60 7.5000

86

Table 5.6: Correlation Analysis for System B

 Maintainability Changeability Stability

Maintainability 1 .933 .999

Changeability .933 1 .951

Stability .999 .951 1

Table 5.7 provides the descriptive statistics for System-C and Table 5.8 provides the

correlation analysis for System-C.

Table 5.7: Descriptive Statistics for System C

 Minimum Maximum Mean

Maintainability 4.20 4.90 4.4666

Changeability 5.90 9.10 7.9666

Stability 8.50 9.60 9.1333

Table 5.8: Correlation Analysis for System C

 Maintainability Changeability Stability

Maintainability 1 .971 .935

Changeability .971 1 .822

Stability .935 .822 1

Table 5.9 summarizes the outcome of the correlations analysis for Maintainability

evaluation model, which shows that for all the systems, both Changeability and

87

Stability are highly associated with Maintainability. The positive value of correlation

analysis shows positive correlation between the maintainability, changeability and

stability. The values close to 1 specify high degree of correlation between the

dependent and independent variables Table 5.9 summarizes the outcome of the

correlation analysis for Maintainability evaluation model, which displays that for all

the systems, both Changeability and Stability are highly correlated with

Maintainability. The positive value of correlation shows positive correlation between

the variables. The values close to 1 specify high degree of correlation between the

maintainability, changeability and stability.

Table 5.9: Correlation Analysis Summary

Maintainability ×

Changeability

Maintainability ×

Stability

System A .983 .993

System B .933 .999

System C .971 .935

The following section shows empirical validation for our proposed model MMOOD.

5.4 EMPIRICAL VALIDATION OF MAINTAINABILITY EVALUATION

MODEL MMOOD

A crucial stage in every research is to empirically validate it. Based on this

requirement we here provide a realistic validation of our proposed maintainability

evaluation model using the sample runs. In order to validate proposed maintainability

88

evaluation model, the projects P11,P12, P13, P14, P15, P16, P17, P18, P19 and P20

as shown in Appendix II-Table II.2 are used to perform statistical test. To validate the

model the maintainability values given by evaluators 1 is considered. During tryouts,

maintainability value of the projects has been evaluated using the developed model

MMOOD. After this the maintainability ranks have been calculated and compared with

the known ranks using Charles Spearman’s Coefficient of Correlation. The known

Maintainability values and ranks for the given projects class diagram is shown in

Table 5.10 and Table 5.11.

The known Maintainability values for the given projects with 10-20 class diagram in

each project is shown in Table 5.10.

Table 5.10: Known Maintainability Values

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

5.3 4.8 5.0 5.1 5.5 4.9 5.4 4.2 4.3 5.3

Table 5.11: Known Maintainability Ranks

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

8 3 5 6 10 4 9 1 2 7

 Using the similar group of data for the given projects maintainability values was

calculated using proposed maintainability evaluation model and the results are shown

in Table 5.12.

Table 5.12: Calculated Maintainability Values by Proposed Model MMOOD

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

5.64 5.33 5.50 5.65 6.01 5.18 5.78 5.03 5.30 5.44

89

Table 5.13: Calculated Maintainability Ranks by Proposed Model MMOOD

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

7 4 6 8 10 2 9 1 3 5

Table 5.14: Calculated Ranks, Known Ranks and their Relations

Projects P1 P1 P1 P1 P1 P1 P1 P1 P1 P20
CalculatedRanks 7 4 6 8 10 2 9 1 3 5

Known Ranks 8 3 5 6 10 4 9 1 2 7

d2 1 1 1 4 0 4 0 0 1 4
∑d2 16
rs 0.90303

rs > ±.781

Charles Spearman’s Coefficient of Correlation (rank relation) rs was used to check the

significance of correlation between calculated ranks of Maintainability using the

proposed model and its known ranks.

The correlation values between rank through the proposed model and known rank are

shown in Table 5.14. Correlation value rs of 0.903 clearly show that the model is

significant. The correlation is up to standard with high degree of confidence, i.e. up to

99.8% as shown in fig.5.2 where data set A represents known values of

maintainability and data set B represents calculated values of maintainability using

our maintainability evaluation model MMOOD model. Therefore, we can conclude

without any loss of generality that Maintainability Evaluation Model is highly reliable

and significant.

90

Fig. 5.2 Graph showing Spearman’s rank correlation between known and calculated

values of maintainability.

In our next section we compare our proposed model MMOOD with two relevant

models.

5.5 COMPARATIVE ANALYSIS BETWEEN MMOOD AND RELATED

EXISTING MODEL

To perform comparative study between proposed model (MMOOD) and related

existing model, the projects P11, P12, P13, P14, P15, P16, P17, P18, P19 and P20 are

used as shown in Appendix II-Table II.1. The data contains the maintainability values

given by ten individual experts (here termed as evaluators). Therefore, the Charles

spearman’s coefficient value has been calculated in comparison with ten different

evaluators Table 5.15: Rank Correlation Comparison between: Proposed Model

MMOOD to models proposed by Rajendra Singh et al. and MEMOOD.

91

Table 5.15: Rank Correlation Comparison between Proposed Model MMOOD and
Rajendra et al.

Evaluators 1 2 3 4 5 6 7 8 9 10

∑d2 with
Proposed
Model-
MMOOD

16

18 14 20 24 28 20 24 26 28

∑d2 with
model
proposed by
Rajendra et
al.

76 74 54 54 94 78 62 130 90 60

∑d2 with
model
MEMOOD

88 106 86 78 144 142 68 114 94 124

rs with
Proposed
Model-
MMOOD

0.903 0.891

0.915

0.879

0.854

0.830

0.879

0.854

0.842

0.830

rs with
model
proposed by
Rajendra et
al.

0.539

0.552

0.673

0.673

0.430

0.527

0.624

0.212

0.455

0.636

rs with
model
MEMOOD

0.467 0.357 0.479 0.527 0.127 0.139 0.589 0.309 0.430 0.248

It is obvious from Table 5.15 that rs values with the assistance of developed

Maintainability Evaluation Model MMOOD are bigger than both related existing model

in above Table 5.15. This specifies that the proposed model MMOOD has an improved

correlation with the maintainability ranks given by the experts and is able to evaluate

maintainability more correctly and appropriately. Therefore, it is clear and evident

from the empirical validation and comparative study that the developed model is more

significant and better than the both related existing model.

92

5.6 SUMMARY

In this chapter, software maintainability key contributors are identified and their

influence on maintainability evaluation and enhancement at design phase has been

investigated. ‘Changeability and Stability, two of the main contributors affecting

object oriented design and development have been taken into consideration for model

development. Considering both the major factors, a maintainability evaluation model

for object oriented design has been developed (MMOOD), and the statistical inferences

are validated for high level better acceptability. Afterward comparative study is doing

between proposed MMOOD and other related existing models. Comparative study

outcome specifies that the proposed model MMOOD has a better relationship with the

maintainability ranks given by the experts and is able to evaluate maintainability more

correctly. Therefore, proposed maintainability evaluation model for object oriented

software design is very trustworthy and associated with object oriented design

properties. Maintainability evaluation model has been validated empirically using

experimental tryout. The practical validation on the maintainability model

accomplishes that developed model is extremely reliable, acceptable and consistent.

The next chapter describes the conclusion and future direction.

93

CHAPTER 6

CONCLUSION AND FUTURE WORK

This final chapter summarizes the contributions of the dissertation and suggests the

directions for extension of our work.

From the detailed discussion of our motivation for this work it can now be well

understood that effectively measuring maintainability improves quality of software

positively on the scale of cost benefit analysis. Quantitatively assessing the

maintainability to improve software i.e. in the design phase of SDLC on Object

Oriented design characteristics provides us huge benefits in present scenario of Object

Oriented software development. Organizations can thus use the proactive strategy to

design their software products with maintainability as key design criteria. We now

summarize the contributions of this work.

6.1 CONCLUSION

We have focused on developing and designing an efficient method for assessment of

maintainability at an early stage of different phases of software development life cycle

for Object Oriented systems. To develop this model the work proposes maintainability

as a function of two internal attributes given by ISO-9126 as sub factors of

maintainability viz. changeability and stability.

We have made mainly three contributions during the present course of study in

addition to many macro level direct or indirect findings. The contributions are

94

the three models for changeability , stability, and maintainability namely CEMOOD,

SEMOOD and MMOOD. These are explained below.

6.1.1 Maintainability Factor Identification: We have used the literature review for

maintainability factor identification and development of maintainability measurement

model as explained below.

In fact, there are many factors affecting software maintainability. We identified two

key factors viz. changeability and stability having a significant contribution in

measuring software maintainability at design phase.

6.1.2 First Contribution: Changeability Evaluation Model (CEMOOD)

We have developed a Changeability Evaluation Model (CEMOOD) for object

Oriented design and established the statistical correlation between changeability and

design properties viz. encapsulation, inheritance, coupling and polymorphism with the

help of multiple linear regressions. Finally, empirical validation of the changeability

evaluation model was performed using commercial software applications.

6.1.3 Second Contribution: Stability Evaluation Model (SEMOOD)

We have developed Stability Evaluation Model (SEMOOD) for object oriented design

and established the statistical correlation between stability and design properties viz.

encapsulation, coupling and inheritance with the help of multiple linear regression.

An experiential corroboration of the Stability Evaluation Model is also done using

commercial software applications.

95

6.1.4 Third Contribution: Maintainability Measurement Model (MMOOD)

In order to strengthen the claim of correlation of Maintainability with Changeability

and Stability, statistical analysis was performed. Being highly correlated,

Changeability and Stability measures are used to develop Maintainability

Measurement Model (MMOOD) as a third contribution of the thesis. Subsequently, an

empirical validation of the maintainability measurement model was carried out using

commercial software applications. The experimental result shows, the developed

model (MMOOD) is highly significant and better than the existing models (MMOOD)

and Rajendra model.

6.2 FUTURE WORK

The model developed to measure software maintainability of object oriented systems

is extremely significant and correlated with object oriented design properties.

Subsequently, we have validated the model using commercial software applications.

However, there is still some scope for future work that is listed below.

1. The models though have been analyzed and validated for separate data sets in the

thesis, an analysis on larger data set may further help fine tune the value of

coefficients.

2. The scope of this thesis is limited to establish the effect of stability and

changeability on maintainability. The relationship between maintainability and other

quality sub-factors or parameters may be analyzed as a direction for future work.

96

3. A generic guideline may be produced in the form of developer’s manual for

designing class hierarchy based on the results of the model.

