Table No.	Name of the Table	Page No.
1.1	Different diagnostic approaches for Tuberculosis	7
1.2	Types of TB	9
1.3	List of first line antitubercular drugs	9
1.4	List of second line anti tubercular drugs	10
1.5	Brief characterstics and applications of various types of Nanosystems	15-16
1.6	Physically targeted drug delivery systems	31
1.7	Profile of Pyrazinamide	36-37
1.8	Profile of Isoniazid	37-39
1.9	Profile of Sodium Alginate	39-40
1.10	Profile of Chitosan	40-41
1.11	Profile of Sodium Tripolyphosphate	41-42
1.12	Profile of Tween 80	42-43
1.13	Profile of Calcium Chloride	43-44
1.14	Profile of Folic Acid	44-45
1.15	Profile of D-Mannose	45-46
2.1	List of Ingredients Used	71-72
2.2	List of Instruments Used	73-74
2.3	Melting point of Isoniazid	75
2.4	Solubility Chart as per I.P (1996)	76
2.5	Solubility of Isoniazid in various solvent	76
2.6	Calibration curve of Isoniazid	78

LIST OF TABLES

2.7	Melting point of Pyrazinamide	79
2.8	Solubility of Pyrazinamide in various solvent	80
2.9	Calibration curve of Pyrazinamide	81
2.10	Values of independent variables chitosan nanoparticles	90
2.11	Design codes for batches of chitosan nanoparticles	90
2.12	Values of independent variables for alginate nanoparticles	92
2.13	Design codes for batches of Alginate- Chitosan nanoparticles	93
2.14	Coded formulated nanoparticles for MABA test	98
2.15	Coded ligand bound formulation	100
2.16	Stability test storage conditions for drug products (As per ICH Guidelines)	104
3.1	Physical appearance of Isoniazid	105
3.2	Melting Point of Isoniazid	106
3.3	IR characterization of Isoniazid	109
3.4	Physical properties of Pyrazinamide	109
3.5	IR Characterization of Pyrazinamide	113
3.6	IR Characteristics of Drugs and polymer interaction (Formulation 1)	114
3.7	IR Characteristics of Drugs, polymer and ligand (D-mannose) interaction	115-116
3.8	IR Characteristics of Drugs, polymer and ligand (Folic acid) interation	117
3.9	IR Characteristics of Drugs and polymer interaction (Formulation 2)	118
3.10	IR Characteristics of drugs, polymers and ligand (D-mannose)	119

	interaction	
3.11	IR Characteristics of drugs, polymers and ligand (Folic acid) interaction	120-121
3.12	Isobestic Point Determination	123
3.13	Different variables used in chitosan nanoparticle preparation	123
3.14	Experimental result data with various factors and their responses on formulated batches of chitosan nanoparticles	123-124
3.15	Different Particle size of formulated batches of chitosan nanoparticles	124-125
3.16	Different Zeta Potential of formulated batches of chitosan nanoparticles	125-126
3.17	Drug entrapment efficiency and loading capacity of formulated batches of chitosan nanoparticles	127
3.18	Effect of chitosan on particle size of various formulated batches of CS NPs	128
3.19	Effect of TPP on Particle size of various formulated batches of CS NPs	129-130
3.20	Effect of Chitosan on Zeta Potential of various Formulated batches of CS NPs	131
3.21	Effect of TPP on Zeta Potential of various Formulated batches of Chitosan Nanoparticles	133
3.22	<i>In Vitro</i> Drug release of combined drug loaded chitosan nanoparticles at 7.4pH	135-136
3.23	<i>In Vitro</i> Drug release of combined drug loaded chitosan nanoparticles at 1.2 pH	137
3.24	Cumulative drug release of optimized batch (8N) of CS NPs	138-140
3.25	Values of independent variables in ALG-CS nanoparticle preparation	144

3.26	Experimental result data with various factors and their responses on formulated batches of ALG –CS nanoparticles.	144-145
3.27	Different Particle size of formulated batches of ALG –CS NPs	145-146
3.28	Different Zeta Potential of formulated batches of ALG-CS NPs	146-147
3.29	Drug entrapment efficiency and loading capacity of formulated batches of ALG-CS NPs	148
3.30	Effect of chitosan on particle size of various formulated batches of ALG-CS NPs	149
3.31	Effect of alginate on particle size of various formulated batches of ALG-CS NPs	151
3.32	Effect of Chitosan concentration on Zeta potential on various formulated batches of ALG-CS NPs	152
3.33	Effect of alginate concentration on Zeta potential of various formulated batches of ALG-CS nanoparticles	154
3.34	<i>In-vitro</i> % drug release profile of alginate chitosan nanoparticles at pH 1.2	155
3.35	<i>In-vitro</i> % drug release profile of alginate chitosan nanoparticles at pH 7.4	156
3.36	Cumulative drug release from optimized batch (3S) of ALG-CS NPs	157-158
3.37	MTT assay for coded sample 3S1	165
3.38	MTT assay for coded sample 3S2	166
3.39	MTT assay for coded sample 3S3	167
3.40	Stability data for optimized batch (3S2) of sodium alginate nanoparticle	167
		1

Figure No.	Name of the figures	Page No.
1.1	Transmission of Tuberculosis	3
1.2	The inhalation of Mycobacterium tuberculosis (Mtb) in hostcausing formation of granuloma	4
1.3	Mycobacterium Tuberculosis	5
1.4	Various types of pharmaceutical nanosystems	14
1.5	Types of nanoparticles	20
1.6	Various types of polymeric nanoparticles	21
1.7	Stucture of chitin, chitosan and cellulose	24
1.8	Extraction of chitin and preparation of chitosan	25
1.9	Sodium alginate production	27
1.10	Infectious agents that manage to survive in macrophages	33
1.11	Various types of receptors over macrophages	34
2.1	UV Spectrum of Isoniazid	77
2.2	IR Spectra of Isoniazid	78
2.3	UV Spectrum of Pyrazinamide	81
2.4	IR Spectra of Pyrazinamide	82
2.5	IR spectrum of drug polymer interaction (Formulation I)	83
2.6	I.R spectrum of drugs, polymers and ligand (D-mannose)	84

LIST OF FIGURES

2.7	I.R spectrum of drugs, polymers and ligand (Folic acid)	84
2.8	IR spectrum of drug polymer interaction (Formulation II)	85
2.9	I.R spectrum of drugs, polymers and ligand (D-mannose)	86
2.10	I.R spectrum of drugs, polymers and ligand (Folic acid)	86
2.11	Overlay Spectra of drug mixture (Isoniazid and Pyrazinamide)	87
2.12	Formulation development of chitosan nanoparticles	89
2.13	Formulation development of alginate-chitosan nanoparticles	92
2.14	Varied surface behaviour between plain and ligand attached nanoparticles	99
3.1	λ_{max} of Isoniazid	106
3.2	Standard curve of Isoniazid at 262nm	107
3.3	Standard curve of Isoniazid at 268.5nm	107
3.4 (a)	IR Spectra of Isoniazid (reference)	108
3.4 (b)	IR Spectra of Isoniazid (sample)	108
3.5	λ_{max} of Pyrazinamide	110
3.6	Standard curve of Pyrazinamide at 268.5 nm	111
3.7	Standard curve of Pyrazinamide at 262 nm	112
3.8 (a)	IR Spectrum of Pyrazinamide (reference)	112
3.8 (b)	IR Spectrum of Pyrazinamide (sample)	113
3.9	IR spectrum of drug polymer interaction (Formulation I)	114

3.10	I.R spectrum of drugs, polymers and ligand (D-mannose)	115
	(Formulation I)	
3.11	I.R spectrum of drugs, polymers and ligand (Folic acid)	116
3.12	IR spectrum of drug polymer interaction (Formulation 2)	118
3.13	I.R spectrum of drugs, polymers and ligand (D-mannose)	119
3.14	I.R spectrum of drugs, polymers and ligand (Folic acid)	120
3.15	Overlay spectra of INH and PYZ with intersection point 225 nm	121
3.16	Overlay spectra of INH and PYZ with intersection point 252nm	122
3.17	Overlay spectra of INH and PYZ with intersection point 283.5nm	122
3.18 (a) &(b)	SEM images of chitosan nanoparticles	126
3.19	Effect of Chitosan concentration on particle size of CS NPs	129
3.20	Effect of TPP on Particle size of CS NPs	130
3.21	Effect of Chitosan on zeta potential of CS NPs	132
3.22	Effect of TPP on zeta potential of CS NPs	133
3.23	Cumulative % drug release of INH and PYZ from various batches of CS NPs at pH 7.4	138
3.24	Cumulative % drug release of optimized batch (8N) of CS NPs	140
3.25	Plot of Zero order release kinetics of the optimized batch (8N) of CS NPs	141
3.26	Plot of First order release kinetics of optimized batch (8N) of CS NPs	141
3.27	Plot of Higuchi release kinetic of the optimized batch (8N) of CS NPs	142

3.28	Plot of Hixon- crowell release kinetic of optimized batch (8N) of CS NPs	142
3.29	Plot of Korsemeyer-Peppas release kinetic of optimized batch (8N) for INH	143
3.30	Plot of Korsemeyer-Peppas release kinetic of optimized batch (8N) for PYZ	143
3.31 (a) &(b)	SEM images of alginate nanoparticles	147
3.32	Effect of chitosan concentration on Particle Size of ALG-CS NPs	150
3.33	Effect of alginate on particle size o of ALG-CS NPs	151
3.34	Effect of chitosan concentration on zeta potential of ALG-CS nanoparticles	153
3.35	Effect of alginate concentration on zeta potential of ALG-CS nanoparticles	154
3.36	Cumulative % drug release of INH and PYZ from various batches of ALG-CS NPs at pH 7.4	157
3.37	Cumulative % drug release from optimized batch (3S) of ALG- CS NPs	157
3.38	Plot of Zero order release kinetics for the optimized batch (3S) of ALG-CS NPs	159
3.39	Plot of First order release kinetics for the optimized batch (3S) of ALG-CS NPs	160
3.40	Plot of Higuchi release kinetic for the optimized batch (3s) of ALG-CS NPs	160
3.41	Plot of Hixon crowell release kinetic for the optimized batch (3s) of ALG-CS NPs	161
3.42	Plot of Korsemeyer-Peppas release kinetic of INH for optimized batch-3S	161
3.43	Plot of Korsemeyer-Peppas release kinetic of PYZ for optimized batch-3S	162
3.44	Image of Cell line J-774	163
3.45	Image of internalized rhodamine dye treated drug loaded nanoparticles (3S2) by macrophage cell (J774) line.	163

3.46	Cytotoxicity study for sample 3S1	168
3.47	Cytotoxicity study for sample 3S2	168
3.48	Cytotoxicity study for sample 3S3	169
3.49	Effect of degradation on drug content of ligand (folic acid) decorated alginate nanoparticle of optimized batch-3S2 at 5°C±3°C	170

LIST OF ABBREVATION

TB	Tuberculosis
WHO	World Health organization
HIV	Human immunodeficiency virus
MDR-TB	Multi drug resistant tuberculosis
XDR-TB	Extensively drug resistant tuberculosis
Mtb	Mycobacterium tuberculosis
DOTS	Directly Observed Treatment and short course drug therapy
PPD	purified protein derivatives
INH	Isoniazid
PYZ	Pyrazinamide
RMP	Rifampacin
BCS	Biopharmaceutical classification system
RES	Reticular endothelial system
SR receptor	Scavanger receptor
Fc receptor	Fragment crystallizable receptor
CR receptor	Complement receptor
LDL	Low density lipoprotein
FTIR	Fourier-transform infrared spectroscopy
ATR	Attenuated total reflectance
TPP	Tripolyphosphate
NaOH	Sodium hydroxide
HCl	Hydrochoric acid
CaCl ₂	Calcium chloride
MABA	Microplate alamar blue assay
DMSO	Dimethyl sulphoxide
FBS	Fetal bovine solution
PBS	Phosphate buffer solution
MTT	Macrophage cytotoxicity test
НСНО	Formaldehyde

LDH	Lactate dehydrogenase
SEM	Scanning electron microscopy
CS	Chitosan
CS NPs	Chitosan nanoparticles
ALG	Alginate
ALG-CS NPs	Alginate chitosan nanoparticles
PDI	Polydispersity index
N/A	Not applicable
Na	Not available