TABLE OF CONTENTS

	Page No.
Certificate	ii
Declaration	iii
Acknowledgements	iv-v
Preface	vi-viii
List of Figures	ix-x
List of Tables	xi
List of Abbreviation	xii
List of Symbols	xiii
CHAPTER 1: INTRODUCTION	1-6
1.1 OVERVIEW	1
1.2 BACKGROUND	2-4
1.3 PROBLEM STATEMENT AND RESEARCH OBJECTIVES	4-5
1.4 THESIS ORGANIZATION	5-6
CHAPTER 2: LITRATURE REVIEW	7-42
2.1 FUZZY LOGIC	8-20
2.1.1 Linguistic Variables	9-10
2.1.2 Arithmetic Fuzzy Logic .	10

2.1.3 Proposition Fuzzy Logics	11-12
2.1.4 Signify Fuzzy Logics	12
2.1.5 Higher-Order Fuzzy Logics	12
2.1.5.1 The Fuzzy Hypercube	13-14
2.1.6 Time Line of Fuzzy Logic Publication	14-18
2.1.7 Fuzzy Logic Article in Pubmed	18-19
2.1.8 Applications of Fuzzy Logic in Bioinformatics	19-20
2.2. ARTIFICIAL NEURAL NETWORK	20-35
2.2.1 The Biological Model	22-24
2.2.2 The Mathematical Model	25-27
2.2.2.1 Activation Functions	27-29
2.2.3. Handling Units	29-30
2.2.4 Neural Network Topologies	30
2.2.5 Training of Artificial Neural Network	31-32
2.2.6 Modifying Patterns of Connectivity of Neural Networks	32-33
2.2.7 Historical Sketch of Neural Networks	33-35
2.3. ARTIFICIAL NEURO FUZZY INFERENCE SYSTEM	35-42
2.3.1 Application of ANFIS in Diverse Area	37-39
2.3.2 ANFIS Article in Pubmed	40
2.3.3 Architecture of Neuro-Fuzzy System	40-42
CHAPTER 3: RISK BASED PRIORITIZATION FOR	43-57
RESPIRATOTRY DISORDER SYSTEM USING SOFT	

COMPUTING

3.1	INTRODUCTION	43-46
3.2.	RESPIRATORY	46-48

3.2.1 Mechanism of Respiratory	48
3.2.1.1. Airway Combustion in respiratory	48-49
3.2.1.2. Inflammatory Mediators	49
3.2.1.3. Mechanism of Airway Hyper Responsiveness	49-50
3.2.2 Cause of Respiratory.	50
3.2.2.1. Environmental	50-51
3.2.2.2. Genetic	51-52
3.2.3 Diagnosis of respiratory	52-53
3.2.3.1. Differential Diagnosis	54-55
3.2.3.2. Signs and Symptoms of Respiratory	55-56
3.2.3.3. Respiratory Severity	57

CHAPTER 4: DEVELOPING CLINICAL DECESION SUPPORT 58-81

SYSTEM USING FUZZY LOGIC AND ARTIFICIAL

NURAL NETWORK	

4.1	SCOPE OF WORK AND STUDY AREA	58
4.2	BACKGROUND	59
4.3	COLLECTION OF DATA	60
4.4	SOFTWARE PAKAGE	60-61
	4.4.1 Features	61
	4.4.2 Algorithm Involved	62
4.5	PLANNING OF FUZZY INFERENCE SYSTEM FOR FINDING	62-75
	OF RESPIRATORY	
	4.5.1 The FIS Editor	63-64
	4.5.2 The Membership Function Editor	64-65
	4.5.3 The Rule Editor	65

4.6	COMPREHENSIVE SOFTWARE ARCHITACTURE OF FUZZY	66
	INFERENCE SYSTEM	
	4.6.1 Model Development	67-73
	4.6.2 Calculation	74
	4.6.3 Defuzzification of the Output	75
4.7	DESIGNING OF ARTIFICIAL NEURAL NETWORK INFERNCE	76-81
	SYSTEM FOR THE DIAGNOSIS OF RESPIRATORY	
	4.7.1 Input and Target Data	76
	4.7.2 Creating the Neural Network	76
	4.7.3 Training the Neural Network	77-80
	4.7.4 Testing the Respiratory Neural Network	81
CHAPTER 5: IMPROVING THE DESIGN OF CLINICAL 82		82-90
	DECESION SUPPORT SYSTEM USING ANFIS	
5.1	INTRODUCTION	82-83
	5.1.1 Methodology	83
	5.1.2 Proposed Method	83-85
	5.1.3 Data Modeling.	85-86
5.2	SYSTEM DEVELOPMENT	87-90
	5.2.1 Data Management system and Preparation	87
	5.2.2 Data Mining	87-88
	5.2.3 Input Phase	88
	5.2.4 FIS Phase	89
	5.2.5 ANFIS Modeling	89-90
	5.2.6 Field Output Phase	90
		91-113

CHAPTER 6: EXPERIMENTAL RESULTS AND COMPARATIVE

ANALYSIS

6.1. FUZZY INFERENCE SYSTEM RESULTS	91
6.1.1 Performance Evaluation of Fuzzy Inference System	91-96
6.2. RESULTS OF ARTIFICIAL NEURAL NETWORK INFERENCE	96-98
SYSTEM MODEL	
6.2.1 Performance Evaluation of ANN Inference System	98-101
6.3 RESULT OF ARTIFICIAL NEURO FUZZY INFERNCE MODEL	101-102
6.3.1 Performance Evaluation of Artificial Neuro Fuzzy Inference System	102-109
6.4. COMPERATIVE ANALYSIS OF VARIOUS SOFT COMPUTING	110-112
TECHNIQUE USED IN THE DIAGNOSIS OF RESPIRATORY	
DISORDER	
6.5. RESPIRATORY MANAGEMENT PLAN	112-113
CHAPTER 7: CONCLUSION	114-116
7.1. CONCLUSION	114-115
7.2. RECOMMENDATIONS	116
APPENDICE	117
APPENDIX I	117-138
APPENDIX II	139
REFERENCES	140-155

LIST OF FIGURE

Page

		No.
Figure 2.1:	2 dimensional hypercube I2 with the 4 non fuzzy subsets $(0, 0)$,	13
	(0, 1), (1, 1), and the fuzzy set (0.5, 0.5).	
Figure 2.2:	The picture of Neural Computation	21
	(www.rajalakshmi.org/dept/BME/BM2401-NOL.doc)	
Figure 2.3:	Biological Neuron (www.rajalakshmi.org/dept/BME/BM2401-	23
	NOL.doc).	
Figure 2.4:	Logistic Activation Function.	26
Figure 2.5:	Gaussian Activation Function.	26
Figure 2.6:	Mathematical Model of Neural Network	27
	(www.rajalakshmi.org/dept/BME/BM2401-NOL.doc)	
Figure 2.7:	Supervised Learning	31
Figure 2.8:	Number of papers distributed by PubMed utilizing ANFIS	40
Figure 2.9:	Neuro-Fuzzy equivalent system	41
Figure 3.1:	Graphical dispersion of Respiratory and COPD load in India.	44
	(Picture is taken from http://arachnoserver.org)	
Figure 3.2:	(A) picture showing airways & lungs (B) normal airway(C)	47
	airway during respiratory (Picture is taken from	
	http://nhlbi.nih.gov).	
Figure 4.1:	Fuzzy Inference System (www.rohan.sdsu.edu)	63
Figure 4.2:	Four information variable (FVC, PEFR, FEV1 and FEF 25-	64
	75%) and one Output variable Respiratory Severity.	
Figure 4.3:	Triangular participation capacity	65

Figure 4.4:	Trapezoidal Membership Function	65
Figure 4.5:	Comprehensive software architecture of fuzzy inference system	66
	for diagnosis of Respiratory disorder system	
Figure 4.6:	The number of events under each classification of fuzzy	67
	inference system	
Figure 4.7:	Membership Function Plot for Input Variable PEFR	68
Figure 4.8:	Membership Function Plot for Input Variable FEV1	69
Figure 4.9:	Membership Function Plot for Input Variable FVC	70
Figure 4.10:	Membership Function Plot for Input Variable FEF2575	70
Figure 4.11:	Membership Function Plot for Output Variable Respiratory	71
	Severity	
Figure 4.12:	Rule Viewer for Respiratory Inference System	73
Figure 4.13:	AND operation over a persistently differing scope of truth	74
	values A and B	
Figure 4.14:	Defuzzification of the aggregate output	75
Figure 5.1:	The proposed ANFIS	85
Figure 5.2:	Information of the ANFIS model	90
Figure 6.1:	Output Classification of Respiratory Severity	91
Figure 6.2:	Plot between PEFR, FEV1 and Output	95
Figure 6.3:	Plot between FEF2575, FEV1 and Output	95
Figure 6.4:	Plot between FEF2575, FVC and Output	95
Figure 6.5:	Plot between FEV1, FVC and Output	95
Figure 6.6:	Plot between PEFR, FVC and Output	95
Figure 6.7:	Plot between PEFR, FEF2575 and Output	95
Figure 6.8:	ANN Performance Plot	96

Figure 6.9:	ANN Regression Plot Figure	97
Figure 6.10:	Comparative examination of fuzzy, ANN and ANFIS inference	112
	framework	

LIST OF TABLES

Table 2.1:	Number of papers distributed by PubMed utilizing fuzzy	18-19
	logic	
Table 3.1:	Characterization of Respiratory seriousness with various	57
	parameters (according to GINA Report, 2009)	
Table 4.1:	Membership Function esteem for Input Variable PEFR	69
Table 4.2:	Membership Function esteem for Input Variable FEV1	69
Table 4.3:	Membership Function esteem for Input Variable FVC	70
Table 4.4:	Membership Function esteem for Input Variable FEF2575	71
Table 4.5:	Membership Function esteem for output Variable	71
	Respiratory Severity	
Table 4.6:	Shows the Rule base for Respiratory disorder Inference	72
	System	
Table 4.7:	Logical operation performed by AND Connection in Fuzzy	74
	Logic	
Table 6.1:	Results of the Fuzzy inference system framework output	92-94
	and field information output	
Table 6.2:	Results of the ANN deduction framework output and field	99-101
	information output	
Table 6.3:	Testing and preparing mistake of various frameworks for	103
	module No 1	
Table 6.4:	Testing and training error of different systems for module	104

No.-2

Table 6.5:	Results of the ANF derivation framework output and field	105-107
	information output for System Number 2 of Module 1	
Table 6.6:	Results of the ANF inference system output and field data	107-109
	output for System Number 4 of Module 1	
Table 6.6:	Comparative Result with the same Parameters	110
Table 6.7:	Comparison of error and its Accuracy	111
Table NoI.:	Training Data Set	117-132
Table NoII.:	Testing Data Set	132-138

LIST OF ABBREVIATIONS

AFLC	Adaptive Fuzzy Leader Clustering
ANFIS	Adaptive Neuro Fuzzy Inference System
ANN	Artificial Neural Network
CAT	Computed Axial Tomography
COG	Centre of Gravity
COS	Centre of Singleton
СТ	Computed Tomography
FCM	Fuzzy C-Means
FIS	Fuzzy Inference System
FLC	Fuzzy Logic Controller
GUI	Graphical User Interface
IS	Inference System
MF	Membership Function
MLP	Multi Layer Perceptron
MR	Magnetic Resonance
MRI	Magnetic Resonance Image
NMR	Nuclear Magnetic Resonance
NN	Neural Network
PCA	Principal Component Analysis
PET	Positron Emission Tomography
PNN	Probabilistic Neural Network
RF	Radio Frequency
RGB	Red Green Blue

LIST OF SYMBOL

θ	Threshold
i	Input signals
W	Weight the neurons
b	Bias signal
Ο	Output signals
Σ	Summation of all incoming signals
П	Product of all the incoming signals
x	Universal sets
e	Error
Ε	Total error
E	Subset
μA(x)	Membership functions of A
Ç	Intersection @ AND logic operation
È	Complement @ OR logic operation
f	Activation function
M x N	Rows x columns
i	Training image of image i
Φ	Pixel vector
ωi	feature vectors