
 

 

 

 

 

1 

 

 

 

 
 

 

 

CHAPTER 2 

 

 

RELIABILITY ESTIMATION AND PREDICTION: A REVISIT 

 

 

 
2.1  BACKGROUND 
 

 

Research in a particular field requires an elaborate review and study of 

literature related to that subject. A critical review of the literature provides information 

regarding, what has been done in the same area, leading to a significant investigation. 

Detailed and careful reviews of the experts and researchers also promote greater 

understanding of the chosen topic, procedures, methods and algorithms and enable to 

frame useful hypothesis (Duraisamy, 2008).  

 

As revealed in the literature (Bhatnagar and Kakkar, 2015; Catal, 2011; 

Dhiauddin, et. al, 2012; Fazal-e-Amin, et. al, 2012; Fenton et al., 2007; Li, 2002), the 

cost of a software application in the past decades was sweat, blood, tears, and endless 

debugging sessions. This is because the demand for complex software systems has 

increased more rapidly than the ability to design, implement, test, and maintain them. 

Besides, the ever increasing complexity of software has impaired our ability to 

understand how faults are born, manifest, propagate, and eventually lead to failures 

of the software. Many reported system outages or machine crashes were traced down to 



 

 

 

 

 

2 

 

computer software failures, such as the London Stock Exchange crash in 2008, the Air-

Traffic Controller incident at Los Angeles Airport in 2004 (Kong, 2009). As literature 

has reported various software problems, the reliability of software systems has 

become a major concern for our modern society. 

 

Review of the literature has exposed number of unfortunate events that 

occurred because of lack of reliability in the corresponding software applications, 

especially in the defense and health domain. In most of the cases a significant number 

of human had lost their lives. One incident was reported in 1993 by South West 

Thames regional health authority on the computer aided dispatch system that was 

broken after its installation, consequently London ambulance service was unable to 

handle more than 5000 daily request for carrying patients in emergency situations (Li, 

M. and Smidts, 2003). Due to incompatible software response to the pilots, airline 

industry had faced a number of airline crashes (Ashish, et. al, 2012). During the Iraq 

war, an example of software unreliability came into the light when the patriot missile 

fails to intercept a scud missile (Lyu, 1996). After noticing these events it could be 

easily concluded that reliability is one of key quality attribute of any software 

application. Actually, reliability measurement in software is still in its infancy (Lyu, 

1996). Even though researchers agree that development process, faults and failures 

found are all factors related to software reliability, no good quantitative methods 

have developed to represent software reliability without excessive limitations. 

 

This chapter starts with the background of current scenario. Brief taxonomy 

of software reliability measurement models has been put forth. Criticality of the early 

reliability measurement has been discussed, followed by a comprehensive literature 



 

 

 

 

 

3 

 

review of various reliability estimation or prediction studies. The chapter presents a 

survey of Software Reliability prediction along two perspectives; Software Metrics and 

Fuzzy Logic. Finally the summarized form of critical finding noticed during the review 

concludes the chapter. 

 

2.2        BRIEF TAXONOMY OF SOFTWARE RELIABILITY MEASUREMENT 

MODELS 

 

 

The current practices of software reliability include two categories of 

activity: reliability prediction and reliability estimation (Lyu, 1996), shown in figure 2.1: 

 

Figure 2.1 Brief Taxonomy of Software Reliability Models 

 

Reliability Estimation: This job determines the software reliability through 

statistical inference techniques. Techniques are applied to failure data that is obtained 

while the software is being tested or while, it is in operation. This is a measure 

regarding the achieved reliability from the past until the current point. Its key objective 

is to assess the current reliability, and to know whether a reliability model is a good fit 

in retrospect. 

 



 

 

 

 

 

4 

 

Reliability Prediction: This task finds future reliability of the software, based 

on available software metrics and measures. Depending on the phase of the software 

development life cycle, prediction uses different techniques: When failure data are 

available, the estimation can be based on parameters and verify software reliability 

models, which can perform future reliability prediction. When failure data are not 

available, then those metrics are used, that are based on these early stage of software 

development life cycle like requirements and design stage and the characteristics of the 

resulting product like software requirements specification document or design documents 

to determine reliability of the software upon testing or delivery. This is usually called 

“early prediction” Figure 2.2 (Kong, 2009) 

 

Figure 2.2 Software Reliability Measurement vs. Development Process 

 

Fenton and Pfleeger, (1998) classified software metrics into three main 

types: product metrics, process metrics, and project metrics: Product  metrics describe  

characteristics  of  the  software development life cycle processes outputs such as 

requirements specifications documents,  design  diagrams,  source code, and 



 

 

 

 

 

5 

 

executable programs. Examples of classical product oriented metrics are McCabe‟s 

Cyclomatic Complexity, Line of Code (LOC), and Mean Time To Failure (MTTF) 

(Neumann, 1988; Smidts and Li, 2000). Process metrics focuses on the attributes of 

the software development process like the methodology being followed and other 

factors related to the development environment.  Research has highlighted that a 

relationship exists between the development process and the ability to complete projects 

on fix schedule and as per the desired quality objectives (Boehm, 2000). 

 

Higher reliability level can be achieved by using better and matured 

development process, process to handle risks, processes taking care of configuration 

management, etc. Project metrics are the metrics that are based on the available 

resources, like the number of developers and their skills. However these metric are rarely 

used in software reliability measurement. 

 

2.3 WHY EARLY RELIABILITY MEASUREMENT IS NECESSARY 

 
As reliability has become a critical factor in software systems, its prediction 

is of great importance. An accurate estimate of reliability can be obtained during the 

last stages of development lifecycle. However, quantifying software reliability in its 

early stage is one of the key area of concern, as described in the following: 

1. The majority of software projects fail to achieve schedule and budget 

goals. 

2. The majority of faults have their root cause in poorly defined 

requirements. 

3. The cost of fixing a software fault is lowest in the requirements phase. 



 

 

 

 

 

6 

 

 

2.3.1   Majority of Software Projects Fail to Achieve Schedule and Budget Goals 

 
Studies available in the literature had described the industry reality for 

decades: a significant number of software projects failed to achieve the decided schedule 

as well as the allocated budget. Figure 2.3 taken from (Kong, 2009) shows some significant 

facts. It could be easily inferred from the following figure that only two percent of the 

developed software has reached to their operational life as delivered by the developing 

organization, while majority, of the software (75%) was either never used or was 

cancelled before delivery.  

 
 

Figure 2.3: Outcomes of Department of Defense Software Spending 

 

A similar work conducted by the Standish Group (1995) on non 

Department of Defence projects produced similar results. Out of over 8,000 projects 

handled by 350 companies, 28% of projects has failed, 46% are challenged, and only 26 

percent of the projects were qualifies as successful.  Poor software quality is a prime 

factor behind various failures, and results in major rework regarding application scope, 

design and code (Standish, 1995). Such rework extends release cycles and consumes 



 

 

 

 

 

7 

 

significant additional budget. Apart from the time and money that has been further 

devoted for rework, the more important issue is the impact on the business reputation and 

its market credibility that compromised because of this rework. Therefore in order to 

control software failures, it is needed to better understand the quality of products being 

developed for today‟s global economy. 

 

2.3.2 Requirements are the Root of Many Problems 

 
 

There are sufficient studies in the literature that early stages of the software 

development are prone to defects. The major risks for the software‟s success are 

confusion and misunderstanding about the requirements. (Easterbrook and Paul, 1998). 

 

Figure 2.4: Distribution of Faults in Software Projects 

 

In a study of a US Air Force project by Sheldon (1992), defects were 

classified by their origins. It had found that software requirements comprised 41% of the 

total defects, while design faults are only 28% of the total faults. Other studies also support 

this result as well. For example, a study conducted by James Martin (1986) had reported 

that over half of all project defects have their roots in the requirements stage as indicated 

in Figure 2.4 (adapted from (Martin, 1986)). Further, the study stated that 



 

 

 

 

 

8 

 

approximately fifty percent of requirements defects originated from the poorly written, 

ambiguous and incorrect requirements. The rest fifty percent faults could be attributed 

to the requirements specifications that are incomplete or those were just omitted. 

 

Figure 2.5 Distribution of Failure Causes of 8000+ projects 

 

Other statistics exhibited comparable problems: 

 70-85 percent of application rework was related to defects in requirements 

(Martin, 1986) 

 44% of projects were cancelled because of problems with requirements 

(Martin, 1986). 

 54% of initial project requirements were actually realized (Standish, 1995; 

Kong, 2009) 

 

 45% of realized requirements ended up actually being used (Standish, 1995) 

 



 

 

 

 

 

9 

 

A survey of Standish Group (1995) also found that of the eight main 

causes for failures of software projects, out of these eight reasons, five were related to 

poor requirements, as presented in Figure 2.5 (adapted from (Standish, 1995)). The 

issues responsible for these poor requirements include incomplete requirements, absence 

of user involvement, impracticable user expectations and frequencies of change 

requests. Various studies also highlighted that process of gathering the requirements is 

also one of the cause for them. Therefore getting the right requirements is probably the 

most important thing that should be done appropriately to achieve customer satisfaction. 

 
2.3.3     Faults Cost Less when Detected and Fixed in Early Stages of Development 

 

The importance of requirements is further emphasized that bulk of the 

effort (82%) is attributed to fixing requirement defects (Leffingwell and Widrig, 2000). 

It is an accepted fact by the most practitioners that cost of fixing a defect is lowest at the 

requirements stage. As the software development progresses into subsequent stages, the 

fixation cost of fault increases dramatically, since this fixation affects other software 

deliverables like design document, source code or test cases. The earlier a fault is 

detected, the less damage it can do to the software, because only very few deliverables 

need corrections. According to the industrial data, the cost of detecting and fixing a 

defect that is introduced during the requirements and design stage of the software 

development life cycle increases exponentially as the development progresses through 

the later stages (Graham et. al, 1993). This fact is pictorially represented in the 

following figure 2.6. In another study, McConnell (1996) concludes that "a requirements 

fault that is left undetected until construction or maintenance will cost 50 to 200 times 

as much to fix as it would have cost to fix at requirements time." 



 

 

 

 

 

10 

 

 

 

 

Figure 2.6 Industry Standard Cost Ratio to Fix a Defect 

 

Other studies, furthermore, show that requirements faults are between 10 and 

100 times more expensive to fix during later stages of the development life cycle than 

during the early stage itself. The reason for this significant difference is the reason that 

most of these defects are not discovered until well after they have been made. This 

delay in fault discovery means that the cost to repair includes both the cost to correct 

the offending fault and the cost to correct subsequent investments in the faults which 

were made in later phases (Kong, 2009).  

 

These investments include the cost for redesign and replacement of code, 

cost for rewriting and preparing the changed and updated documentation. In fact, the 

major issue is scrap and rework. If a defect was introduced during the coding phase then 

the coder just fix the error and re-compile the code. But, if a fault has its origin in the 

requirements and not been detected until the testing stage then the rework has increased 

significantly. Because, developer re-do the requirements, then correct the design, re-do the 

coding, revise the test cases as well as the related documentation. It is all this “re-do” 

work that sends projects over budget and over schedule. 



 

 

 

 

 

11 

 

 

 

 
 

Figure 2.7 Cumalative Effect of Faults 

 

This claim is supported by many studies. For instance, a study reported that 

approximately 40% of the entire software budget was spent in rework or revision because 

of faults detected late in the development life cycle. Another study (Davis and 

Leffingwell, 1995) indicates that in the current scenario majority of companies spent 

between 30-40% of total project costs on rework activities. Subsequently finding and 

fixing faults consumes 70% - 85% of total costs. Faults are introduced in various stages 

of the development process, as shown in Figure 2.7 (taken from (Pfleeger and Atlee, 

2006)). This figure shows that faults which originate in early stages can have a lasting 



 

 

 

 

 

12 

 

influence on the quality of software: they are the earliest to invade the system and the 

last to leave, if not fixed. This is referred as fault cumulative effect (Pfleeger and Atlee, 

2006), which highlights why requirements stage defects, in comparison to defects 

introduced into the design and coding phases are generally more expensive to be 

defected and fixed. 

 

The role of software has shifted from simply generating financial or other 

mathematical data to monitoring and controlling equipment which directly affects 

human life and safety. Software‟s increasing role creates both requirements for being 

able to trust it more than before, and for more people to know how much they can trust 

their software products (Kong, 2009). As a result, methods used to achieve, predict, and 

assess the safety and reliability of software is strongly needed in academia, industry, 

and government. This is also true since many legal issues related to software liability are 

evolving (Kong et. al, 2007). 

 

Different parts of the software-related industry and society face different 

challenges. For developers, designers and managers involved in software 

development it become necessary that they identify as well as recognize early 

indicators for the development of quality software. These indicators will provide an 

opportunity to take in time corrective measures to reduce cost and prevent disasters. 

Similarly for regulators and policy makers involved in the certification of software 

systems, practical methods and tools are also needed for quantitatively assessment of 

software products (Tyagi and Sharma, 2012). Clearly, software engineering suffers 

from problematic requirements specifications. Matured, well-defined, and quantitative 



 

 

 

 

 

13 

 

assessment methods for the reliability of the software products are not generally 

applicable until later life cycle phases. Most prediction methods prescribed for early 

stages remain qualitative and depend heavily on expert opinions and their subjective 

judgments. Therefore, the need to develop better software requirements engineering 

techniques is urgent (Kong, 2009). 

 

2.4  VIRTUES OF EARLY SOFTWARE RELIABILITY MEASUREMENT 

 

 

First, the advantage for early software reliability measurement is simple 

economics. Defects introduced during requirements are the major source of project 

failures and the most costly to be fixed. Because of that, not only detection of 

requirement defects, but also their removal at the earliest during the development life 

cycle will significantly improve the quality of the developing software to be delivered in 

future. With the cost of some software exceeding tens or even hundreds of millions 

of dollars and with development time of more than 12 to 18 months, early reliability 

measurement can significantly contribute to the success (Fazal-e-Amin, et. al, 2011). 

 

Secondly, early software reliability measurement provides a solid 

groundwork and at the same time may help software professionals to take appropriate 

corrective measures right from its requirements phase, to deliver software with an 

improved reliability level, close to the user‟s expectation. If software reliability 

assessment is done early then it is possible to determine what corrections or 

improvement can be made to the software methods, techniques, or organizational 

structure. 

 



 

 

 

 

 

14 

 

 

Figure 2.8 Development Schedule with/without Early Fault Detection 

 

Thirdly, with recent strong emphasis on the development speed of 

software, the early feedback can have the greatest impact on schedules of software 

projects. It was observed that early defect detection could significantly cut down the 

development schedule, as shown in Figure 2.8 (taken from (Fagan, 1986). This is 

because the future rework is reduced if requirements defects are detected and removed 

during early stages of development (Fagan, 1986; Smidts et. al, 1988). 

 

2.5  STATE-OF-THE-ART ON RELIABILITY MEASUREMENT 

 

During the last two decades significant number of software reliability 

prediction and defect prediction models has been proposed, where the researchers have 

used a variety of techniques to achieve their objectives (Arikan, 2012; Ashish, et. al, 

2014a; Dambros, et. al, 2012; Hai, et. al, 2013; Palviainen, et. al, 2011; Pandey, et. al, 

2012; Si, et. al, 2011; Tyagi and Sharma, 2014b; Ying, et. al, 2014). Early software 

reliability prediction has attracted significant interest from software practitioners and 

researchers since the early 1990‟s. However, quantifying software reliability in an early 



 

 

 

 

 

15 

 

stage has been a difficult research subject that many researchers have attempted to solve 

with limited success (Rizvi, et al, 2015; Tyagi and Sharma, 2014c). Traditional methods 

for predicting the software reliability such as reliability growth models, base their 

estimates on the number of observing defects as well as fixing faults during validation 

testing, where operational patterns represent the environment as the product will 

face during its operational life in the actual field use. Unfortunately, during early 

stages of software development failure data is absent to predict or estimate the reliability 

of the developing software. Therefore, literature has witnessed a verity of approaches 

and models, but only a few can be applied in early development stages, e.g. requirements 

and design stage, before the coding starts. This is because only those methods or models 

that provide a reasonable estimation without the need of any actual failure data are 

applicable in early development stages. 

 

The pioneering early-stage reliability measurement models proposed in the 

early 1990‟s include: Gaffney and Davis‟ (1990) phase-based model, Agresti and 

Evanco‟s (1992) Ada software defects model, and the US Air Force‟s Rome Lab model 

(Rome Laboratory, 1992). The basic thinking of these early-stage models is to obtain 

as much information as possible. Kong, (2009) has referred this approach of early 

prediction as the “white box” approach, which requires detailed information usually not 

available in most cases. There are parameters in the estimation and prediction model that 

have tradeoff capability (maximum/minimum predicted values). The developer can 

determine where some corrections or improvements can be made in development 

process to achieve better and improved estimates for fault-density. However, this tradeoff 

is valuable only if the analyst has knowledge of the software development process. 



 

 

 

 

 

16 

 

 

Smidts et. al, (1997), had used Bayesian networks to make out how software 

metrics are related with defect proneness? The study had used metrics data from the 

promise repository. Beside the software metrics available in promise repository, 

authors defined two more metrics NOD (based on the number of developers) and 

LOCQ (related to the quality of source code). On the basis of the results from the 

experiments, the study had inferred that, on defect proneness, the three metrics CBO, 

WMC, and LCOM were not as effective as RFC, LOC, and LOCQ. Besides that the 

study had also highlighted that the two metrics NOC and DIT had very restricted effect 

and are undependable. 

 

Okutan and Yildiz, (2014) proposed an early defect prediction model with 

Bayesian Nets, which may predict defects that may pop up either during testing or 

when the software would be used during its routine operations. The study applied the 

model by analyzing numerous evaluation measures on a dataset obtained through a 

questionnaire distributed to thirty one, consumer electronics project managers. 

 

Zheng, and Lyu, (2010) suggested how metric‟s subjective assessment can 

be done with the help of a questionnaire. The study also mentioned that few of the 

project factors, like size of the software with some metrics may predict the software 

residual defects. 

 

Tripathi and Mall (2005) proposed a model based on Reliability Block 

Diagram (RBD) for representing real-world problems and an algorithm for analysis of 



 

 

 

 

 

17 

 

these models in the early phases of software development. The authors had also reiterated 

that most of the fault prediction models rely on the software size and complexity 

metrics for estimating the number of defects, and used for system design assessment.  

 

By assuming the same failure rate between two similar software projects, 

Hu et. al, (2006) suggested to "reuse" failure data from previous releases. The authors 

has observed better prediction level in the early phases of testing compared with the 

original ANN model without failure data reuse (Kong, 2009). 

 

Brosch et. al, (2010) proposed an approach that uses past defect data to 

improve reliability predictions. The study inferred the potential of requirement and 

design metrics to predict the number of faults at design stage of the development. The 

study had developed an early stage reliability predictor with the help of requirement 

and design level metrics. Numerical example was illustrated with both actual and 

simulated datasets. The analysis with example shows that the proposed approach works 

effectively in the early phases of software. 

 

Cheung et. al (2008) developed a framework for reliability prediction of 

software components during the design phase. The study also emphasizes that product 

and process characteristics may be one of the mean to predict residual defects in the 

early stages. These characteristics are supposed to be embedded in software metrics. 

Therefore, software metrics may play a promising role for predicting the reliability of 

software while it is in its early phases of development. The authors highlighted the 

limitations of the study that the scalability of their reliability prediction technique at the 

system level remains a challenge and further investigation is needed.  



 

 

 

 

 

18 

 

 

Lahami et. al (2010) propose an incremental software development process 

that addresses reliability concerns, from early to late stages of development. Author 

has merge two dependability means: fault prevention and fault forecasting techniques 

in order to build reliable distributed software systems. Further the study has suggested 

that identification of suitable set of metrics should be considered a significant step in 

order to develop a defect prediction model with higher prediction accuracy. More 

recently, Hazra et. al (2013) presented formal methods for determining whether a set 

of components with given reliability certificates for specific functional properties are 

adequate to guarantee desired end-to-end properties with specified reliability 

requirements. Authors introduced a formal notion for the reliability gap in component 

based designs and demonstrate the proposed approach for analyzing this gap using a 

case study developed around an Elevator Control System. 

 

Common problems with these existing approaches are: absence of 

applicability along with scalability, over-dependence on specific type of data and 

overlooking or neglecting quality of early stage documentation like, Software 

Requirements Specifications, which is the most critical document prepared as the 

requirements gathering, analysis and specifications have completed. Therefore, these 

approaches have become inappropriate or unsuited to provide trustworthy results. 

 

Software reliability quantification has attracted immense interest from 

researchers as well as software practitioners since the early 1990‟s. Traditional methods 

for quantifying the software-reliability such as reliability growth models estimates 



 

 

 

 

 

19 

 

reliability on the basis of the defects observed during validation testing, where 

operational patterns represent how actually the product would be used (Lyu, 1996; 

Reibman and Veeraraghawan, 1991). However, quantifying software reliability in an 

early stage has been a tricky research topic that many researchers have attempted to 

resolve with limited success. Unfortunately, absence of failure data in early stages of 

software makes it challenging to measure the reliability. So there are just a few 

attempts, addressing the concept of early software reliability assessment or prediction 

(Jiang et al., 2007). 

 

During the review of literature it is commonly observed that software 

metrics has been playing a prominent role in fault identification (Catal and Diri, 2009; 

Mizuno and Hata, 2009; Radjenovic et al., 2013). In a study (He et al., 2015) authors 

had focused on the selection of an appropriate metrics suite to develop a prediction 

model. The study also demonstrates that how this selection impact on the fault 

prediction accuracy. While, Maa et al., (2014), had proposed a reliability prediction 

model, that highlighted the potential of requirement and design metrics in defect 

prediction at the early stage of development. In another effort, the concept of bayesian 

networks was used by Yin et al, (2000)
 
to publicize the relationship between software 

metrics and defect proneness. 

 

In (Catal and Diri, 2009) authors supported the role of method-level metrics 

in predicting defects of application software. While the efforts had done by Radjenovic 

et al., (2013), drawn attention towards the potential of Chidamber and Kemerer‟s 

object-oriented metrics in predicting defects. The study also concluded that these 



 

 

 

 

 

20 

 

metrics are not only the most frequently used metrics but also used twice than other 

conventional metrics. Another work in the area of defect prediction (Pandey and Goyal, 

2013) has considered the role of process maturity with software metrics, while 

developing a defect prediction model. The study had developed fuzzy profiles for 

different metrics followed by the fuzzy inference process, but the criteria behind these 

profiles were not justified properly.  

 

In a study Georgieva, et al., (2011) have used the fuzzy logic approach for 

measuring software reliability, and concluded that participation of fuzzy logic has 

overcome the limitations of probability based reliability models. Another fuzzy based 

model proposed by Yadav et al., (2012) that predicts the residual faults during the 

testing stage. Another well known work done by Pandey and Goyal, (2010) where, a 

data mining technique (classification) was used with fuzzy logic to categorized software 

modules as fault prone or not.  

 

While, the research (Aljahdali, 2011) had demonstrated, how fuzzy logic can 

solve the modeling issue of reliability? The study had developed a fuzzy based 

reliability growth model that estimate software defects at the testing stage during 

development. Khalsa, (2009) had also proposed an approach that make use of fuzzy sets 

to identify software modules with larger defect density in the design stage of SDLC. 

While Adaptive-Network based Fuzzy Inference System approach had been followed 

by Yaun and Zhang, (2011) to develop a reliability model based on Fuzzy-Neural 

hybrid network. 

 



 

 

 

 

 

21 

 

After briefly describing a variety of research works, some of the pertinent 

and resent studies have been described in the following paragraphs with proper detail 

followed by corresponding critical findings. 

 

2.5.1 A Fuzzy Inference Model for Reliability Estimation of Component Based 

Software System 

 

Jaiswal and Giri, (2015) developed a Reliability estimation model of 

component-based software system. Beside this author had also developed a model that 

computes reusability in terms of understandability, variability, portability, 

maintainability and flexibility. 

 

Critical Findings: 

 One important finding is the weight that the author had used for 

understandability, variability, portability, maintainability and flexibility to 

compute the reusability. All the five factors were multiplied by a fixed value 

(i.e. 0.2). This is not justified as each of these factors may have different 

magnitude of influence on reusability. Although, the study may use the multiple 

linear regression to get better values in this case. 

 

 The study had not described the development as well as validation process 

properly. It is unclear how accurate the reliability prediction given by this 

approach would be. 

 



 

 

 

 

 

22 

 

 Author did not perform the correlation analysis among the initially identified 

factors, to discard those that provide redundant information (i.e. measures 

similar property). Applying Pearson‟s correlation test with suitable significance 

level can do this. For each couple of highly correlated factor, only one of them 

will be selected. 

 

2.5.2  Reliability Estimation of Object-oriented Software: Design Phase 

Perspective  

 

Kumar and Dhanda, (2015) proposed a Reliability estimation model of 

object-oriented software in design phase. The model computes reliability in terms of 

effectiveness and functionality. Prior to develop reliability model, study had developed 

separate models for effectiveness as well as functionality. All the three models have 

many serious technical issues that question on their validity as well as on the entire 

study itself. 

 

Critical Findings: 

 There are many factors that are more significantly impact on reliability than 

effectiveness and functionality. But overlooking them and considering 

effectiveness and functionality without any quantitative ground is not justified. 

 

 The most critical point is that the equation of the developed reliability model 

(equation 4 in Kumar and Dhanda, 2015) shows that effectiveness and 

functionality negatively impacting the reliability value (i.e. both have negative 

coefficient), which is not true. Because each of these are positively correlated 

with the software reliability. 



 

 

 

 

 

23 

 

 

 Developing a model using just five records, questions on validity of the model. 

 

 Similarly the significance (p value) of the „encapsulation‟ in table 2 (i.e. 0.783), 

discourage its involvement in the „effectiveness estimation model‟. 

 

2.5.3  Reliability Quantification of Object-Oriented Design: Complexity 

Perspective 

 

Yadav and Khan, (2012a), proposed and implemented a reliability 

quantification model for object-oriented design. Focus of the study was to compute 

complexity of object-oriented design, followed by reliability computation in terms of 

complexity. The study had used multiple linear regression to quantify complexity and 

reliability. 

 

Critical Findings: 

 

 The study had highlighted that the Inheritance impacted positively on 

complexity (means as inheritance increases the complexity of the OO design 

will also increases), but the proposed Complexity model (CEM) does not 

support this, as “IMc” has a negative coefficient that will impact on the OOD 

complexity inversely. 

 The thesis had developed two multiple regression models (i) Complexity 

Estimation Model (CEM) and (ii) Reliability Estimation Model (REM). 

 



 

 

 

 

 

24 

 

 Similarly, the paper had also emphasizes that the Encapsulation is inversely 

proportional to the deign complexity (means as encapsulation increases the 

complexity of the OO design will go down), but the proposed Complexity 

model (CEM) does not support this, as “EMc” has a positive coefficient means 

the proposed model will increase the OOD complexity as the encapsulation 

increases. 

 

 The study had not justified the goodness or statistical significance of neither of 

the model. It is not clear how efficiently these models are quantifying their 

respective dependent variables (Complexity and Reliability). 

 

 In the Complexity Model the significance of individual independent variable 

was not shown, that is required to justify their participation as independent 

variables in the complexity model. (t Test should be used for this.) 

 

 

2.5.4 Towards a Formal and Scalable Approach for Quantifying Software 

Reliability at Early Development Stages 

 

Wende Kong, (2009) in his Ph.D., proposed an approach to predict the 

reliability at the end of the requirements phase, on the basis of SRS document. Focus 

of the study was on the correctness and completeness of the SRS. The author had used 

the Cause-Effect Graph Analysis for predicting the reliability. The study 

mathematically formalized the cause effect graph, and applied it on SRS to identify its 

faults, subsequently fault tree was built through the identified SRS faults. In order to 



 

 

 

 

 

25 

 

analyze the fault tree Binary Decision Diagram (BDD) approach, along with an 

algorithm were used to quantifying the impact of the detected requirements faults on 

software reliability. 

 

Critical Findings: 

 The process of identifying SRS faults is totally manual, requires domain 

knowledge and understanding of the system under study along with inspector‟s 

creativity, experience and even intuition. 

 

 Without prior and comprehensive knowledge of the system, the faults found 

through CEGA may not be correct and the final reliability estimation may not 

be very meaningful. 

 

 Approach is very costly and time-consuming, specially, to construct an initial 

Cause Effect Graph (CEG) from a given informal specification. 

 

 Not every aspect of a software system will be specifiable by a CEG, because a 

CEG can only capture functional requirements specified in the SRS. CEG 

analysis could not detect hidden requirements. 

 

 Validation process was not up to the mark. It is unclear how accurate the 

reliability prediction given by this approach would be. 

 

 Scalability is also one the issue, for large SRS it is very difficult to build and 

analyze the CEG. 



 

 

 

 

 

26 

 

 

2.5.5 Software Reliability Assessment Based on a Formal Requirements 

Specification 

 

Hooshmand and Isazadeh, (2008) proposed an approach for early software 

reliability assessment based on software behavioral requirements. Viewcharts has been 

used to specify the behavior description of software systems. The author had also used 

the concept of Markov chain with viewchart, in order to determine the rate of system's 

transition among its different states. The study further predicated some states, for each 

of the system‟s view, those may cause system failures, and assess software reliability as 

the union of the probabilities of these failure states. 

 

Critical Findings: 

 Drawing viewchart from the system specification is a manual task and needs to 

be done by a person having proper awareness about the different dimensions of 

system‟s behavior. 

 

 The study had not specified any rule or guidelines for drawing the viewchart 

specification from the corresponding system behavior. 

 

 To calculate the rate of system state transition, a prototype of the system needs 

to be build based on its viewchart specifications. Besides that the prototype will 

be executed with some input from the corresponding operational profile. This 

makes the approach quite complicated and expert specific, especially at the 

requirement stage. 



 

 

 

 

 

27 

 

 

 The approach also has the scalability issue, for systems of significant size 

developing the viewchart specification would be a challenging job. 

 

 As the reliability assessment is totally based on the union of the probabilities of 

failure states, therefore for each of the view identifying and introducing the 

probable events those may cause a system failure, needs the comprehensive 

knowledge about the different behaviors of the system. 

 

2.6  SUMMARY OF REVIEW FINDINGS 

 

After reviewing a variety of studies on Reliability quantification, it is the 

time to sum up the findings, and suggest the way to reach to a feasible solution. 

Following is the summary of critical observations noticed during the review: 

 No consensus or standard steps/procedure among researchers for predicting 

software reliability. 

 

 Most of the studies that incorporated Multiple Linear Regression had not 

bothered about multicollinearity and autocorrelation at all. 

 

 Some of the studies have been suffering from severe technical shortcomings 

that compel to deduce that those researchers had not put their sincere effort. 

 

 Dataset used for empirical analysis were inappropriate in size and also lacks 

quality data. 



 

 

 

 

 

28 

 

 

 Some researchers performed quantification quite well, but did not provide 

suggestive measure and guidelines to be followed for controlling the 

unreliability. 

 

 One of the observations that cannot be overlooked is the need of timely 

identification and subsequent fixation of residual defects so that reliable 

software could be delivered in time. 

 

 The best time to detect and arrest faults is the requirements and design stages. 

To accomplish this task researchers are bound to use quality measures based on 

these stages. But usually most of metric values in early stages are subjective as 

their sources are the opinions of domain experts. 

 

 Therefore, to deal with such intrinsic subjectivity and vagueness, fuzzy 

techniques have come up as a dependable tool in capturing and processing these 

early stage metric values. 

 

 There are just a few attempts where fuzzy techniques were used to quantify the 

reliability. But the key concern is the time and the stage of SDLC. These models 

are helping developers either by the end of coding phase or in the testing stage. 

These feedbacks make it too late to improve the existing product towards a 

more reliable one. 



 

 

 

 

 

29 

 

2.7  CONCLUSION 

 

 

To provide a foundation the chapter starts with the brief taxonomy of 

software reliability measurement models, followed by emphasizing the importance of 

early reliability prediction. After presenting the comprehensive state of the art, 

summary of review finding concludes the chapter. Before ending this chapter, it is 

needed to suggest a solution that will overcome the problems highlighted in the 

chapter. Therefore, in the next chapters the researcher is going to present a roadmap in 

the form of a prescriptive framework followed by its implementation and validations. 

 

 


