REFERENCES

- [1] Agreti, W.W., and Evanco, W.M., 1992. Projecting Software Defects from Analyzing Ada Design. *IEEE Transactions on Software Engineering*, Vol. 18, Issue 11, pp. 988-997.
- [2] Alagappan, M., Ferdin, J.J., Shamika, M., Manideep, V., and Mridul, M., 2009, Metric Based Architecture to Enhance Software Usability, Proceedings of the International Multi-Conference of Engineers and Computer Scientists (IMECS'09), 18 - 20 Mar. 2009, Vol. I, Hong Kong, pp. 452-459.
- [3] Aljahdali, S., 2011. Development of Software Reliability Growth Models for Industrial Applications Using Fuzzy Logic. *Journal of Computer Science*, Vol. 7, No. 10, pp. 1574-1580.
- [4] Aljahdali, S., and Debnath, N.C., 2004, Improved Software Reliability Prediction through Fuzzy Logic Modeling, Proceedings of the ISCA 13th Int. Conference on Intelligent and Adaptive Systems and Software Engineering, Nice, France, pp. 17-21.
- [5] Alkadi, G. and Carver, D.L., 1998, Application of Metrics to Object-Oriented Designs, Proceedings of IEEE Aerospace Conference, 21-28 Mar. 1998, Snowmass at Aspen, USA. Vol. 4, pp. 159-163.
- [6] Andersson, M. and Vestergren, P., 2004. *Object Oriented Design Quality Metrics*. Uppsala Master's Thesis in Computer Science 276, ISSN 11001836, pp. 1-27.
- [7] Anthony, H. and Roderick, C., 2002. Correctness by Construction: Developing a Commercial Secure System. *IEEE Software*, Vol. 19, Issue 1, pp. 18-25.
- [8] Arikan, S., 2012, Automatic Reliability Management in SOA-Based Critical Systems, Proceeding of European Conference on Service-Oriented and Cloud Computing, pp. 1-6.
- [9] Arnold, R.S., 1993. *Software Reengineering*. ISBN: 0818632712, IEEE Computer Society Press, Los Alamitos, CA, USA.
- [10] Ashish, S., Agarwal, H. and Singla, A., 2014a. Estimating Reliability of Service-Oriented Systems: A Rule-Based Approach. *International Journal of Innovative Computing, Information and Control*, Vol. 10, Issue 3, pp. 1111-1120.
- [11] Ashish, S., Agarwal, H. and Singla, A., 2014b. Reliability Estimation of Services Oriented Systems Using Adaptive Neuro Fuzzy Inference System. *Journal of Software Engineering and Applications*, Vol. 7, June 2014, pp. 581-591.
- [12] Ashish, S., Agarwal, H. and Singla, A., 2012, Service Oriented Architecture Adoption Trends: A Critical Survey, Proceeding of 5th International Conference on

Contemporary Computing, Communications in Computer and Information Science, Springer, Berlin, Vol. 306, pp. 164-175.

- [13] Bansiya, J. and Devis, C., 1997. Automated Metrics for Object-Oriented Development. *Dr. Dobb's Journal*, Vol. 272, Issue 12, pp. 42-48.
- [14] Bansiya, J. and Devis, C., 2002. A Hierarchical Model for Object-Oriented Design Quality Assessment. *IEEE Transactions on Software Engineering*, Vol. 28, Issue 1, pp. 4-17.
- [15] Basili, V.R., Briend, L.C. and Melo, W.L., 1996. A Validation of Object-Oriented Design Metrics as Quality Indicators. *IEEE Transactions on Software Engineering*, Vol. 22, Issue 10, pp. 751-761.
- [16] Berg, V.D. and Broek, V.D., 1996. *Axiomatic Validation in the Software Metric Development Process*, Chapter 10: Software Measurement, Edited by Austin Melton, Thomson Computer Press.
- [17] Bhatnagar, R. and Kakkar, M., 2015. Predicting Software Reliability Using Machine Learning Approach for SDLC Life Cycle. *International Journal for Technological Research in Engineering*, Vol. 2, Issue 11, pp. 2729-2731.
- [18] Birkmeier, D.Q., 2010, On the State of the Art of Coupling and Cohesion Measures for Service-Oriented System Design metrics, Proceedings of Conference on Information Systems (AMCIS), pp. 1-10.
- [19] Bluemke, I., 2001, Object-Oriented Metrics Useful in the Prediction of Class Testing Complexity, Proceedings of 27th Euromicro Conference, 04 - 06 Sep. 2001, Warsaw, Poland, pp. 130-136.
- [20] Boehm, B.W., 2000. *Software Cost Estimation with COCOMO II*. Englewood Cliffs: Prentice-Hall, Inc.
- [21] Boehm, B.W., 1987. Improving Software Productivity. *IEEE Computer*, Vol. 20, Issue 9, pp. 43-57.
- [22] Boehm, B.W., Brown, J.R., and Lipow, M., 1976, Quantitative evaluation of software quality, Proceeding of the 2nd International Conference on Software engineering, pp. 592-605.
- [23] Boehm, B.W., Brow, J.R., Lipow, M., McLeod, G., and Merritt, M., 1978. *Characteristics of software quality*. North Holland Publishing. Amsterdam, Netherlands.
- [24] Bonthu, K., and Khan, R.A., 2013, Software Reliability Assessment by using Neural Networks with Fuzzy Logic based Systems, Proceeding of International Conference on Advances in Computer Science, pp. 529-535.
- [25] Booch, G., 1994. *Object-Oriented Analysis and Design with Applications*. 2nd Edition, Benjamin Cummings Publishing Co., Inc., Redwood city, CA, USA.

- [26] Bowles, J.B., and Pelaez, C.E., 1995. Application of fuzzy logic to reliability engineering. *Proceedings of IEEE*, Vol. 83, Issue 3, pp. 435–449.
- [27] Breesam, K.M., 2007, Metrics for Object-Oriented Design Focusing on Class Inheritance Metrics, 2nd International Conference on Dependability of Computer Systems, June 14-16, 2007, IEEE Computer Society, pp.231 – 237.
- [28] Brosch, F., Koziolek, H., Buhnova, B. and Reussner, R., 2010, Parameterized Reliability Prediction for Component Based Software Architectures, Proceedings of the 6th International Conference on the Quality of Software Architectures (QoSA'10), Springer, New York, pp. 36-51.
- [29] Cardoso, J., 2006, Process Control-Flow Complexity Metric: An Experimental Validation, IEEE International Conference on Services Computing (IEEE SCC 06), Chicago, USA, IEEE Computer Society, pp. 167-173.
- [30] Catal, C., 2011. Software Fault Prediction: A Literature Review and Current Trends. *Expert System with Applications*, Vol. 38, Isuue 4, pp. 4626-4636.
- [31] Catal, C. and Diri, B., 2009. A Systematic Review of Software Fault Predictions Studies. *Expert System with Applications*, Vol. 36, Issue 4, pp. 7346-7354.
- [32] Chatterjee, S., Misra, R.B., and Alam, S.S., 1997. Joint effect of test effort and learning factor on software reliability and optimal release policy. *International Journal of System Science*, Vol. 28, Issue 4, pp. 391–396.
- [33] Cheung, L., Roshandel, R., Medvidovic, N. and Golubchik, L., 2008, Early Prediction of Software Component Reliability, Proceedings of the 30th International Conference on Software Engineering (ICSE' 08), May 10-18, 2008, pp. 111-120.
- [34] Chris, M. and Paul, A.S., 2000, Fuzzy Concepts and Formal Methods: A Fuzzy Logic Toolkit for Z, Formal Specification and Development in Z and B, Lecture Notes in Computer Science 1878, Springer Berlin Heidelberg, pp. 491-510.
- [35] Chrissis, M.B., Konrad, M. and Shrum, S., 2006. CMMI: Guidelines for Process Integration and Product Improvement. 2nd Edition, New York: Addison-Wesley Professional, ISBN-10: 0321279670.
- [36] Chulani, S., Boehm, B., Steece, B., 1999. Bayesian analysis of empirical software engineering cost models. *IEEE Transactions Software Engineering*, vol. 25, Issue 4, pp. 573–583.
- [37] Conte, S.D., Dunsmore, H.F. and Shen, V.Y., 1986. Software Engineering Metrics and Models. ISBN: 0805321624, Benjamin Cummings Publishing Co., Inc., Redwood city, CA, USA.
- [38] Dalal, S.R., Lyu, M.R. and Mallows, C.L., 2014. *Software Reliability*. John Wiley & Sons.
- [39] Dallal, J.A., 2010. Mathematical Validation of Object-Oriented Class Cohesion Metrics. *International Journal of Computers*, Vol. 4, Issue 2, pp. 45-52.

- [40] Dambros, M., Lanza, M., and Robbes, R., 2012. Evaluating Defect Prediction Approaches: A Benchmark and an Extensive Comparison. *Journal of Empirical Software Engineering*, Vol. 17, Issue 4-5, pp. 531-577.
- [41] Danilecki, A., Holenko, M., Kobusinska, A., Szychowiak, M. and Zierhoffer, P., 2011, ReServE Service: An Approach to Increase Reliability in Service Oriented Systems, Parallel Computing Technologies, PaCT 2011, LNCS 6873, pp. 244-256.
- [42] Davis, A.M. and Leffingwell, D.A., 1995. Using Requirements Management to Speed Delivery of Higher Quality Applications. Available at: http://tinf2.vub.ac.be /~dvermeir/courses/ software_engineering/696wp.pdf.
- [43] DeLucia, A., Pompella, E. and Stefanucci, S., 2005. Assessing effort estimation models for corrective maintenance through empirical studies. *Journal of Information and Software Technology*, Vol. 47, Issue 2, pp. 03-15.
- [44] Dhiauddin, M., Suffian, M., and Ibrahim, S., 2012. A Prediction Model for System Testing Defects using Regression Analysis. *International Journal of Soft Computing and Software Engineering*, Vol. 2, Issue 7, pp. 55-68.
- [45] Dromey, R.G., 1995. A Model for Software Product Quality. *IEEE Transactions on Software Engineering*, Vol. 21, Issue 2, pp. 146-162.
- [46] Dromey, R.G., 1996. Concerning the Chimera. *IEEE Software*. Vol. 1, pp. 33-43.
- [47] Duraisamy, S., 2008. Software Quality Assessment in Object Oriented Design. Ph.D. thesis Alagappa University, India.
- [48] Easterbrook, S. and Paul, A.S., 1998. An Experience Report on Requirements Reliability Engineering Using Formal Methods. *IEEE Transactions on Software Engineering*, vol. 24, Issue 1, pp. 4-14.
- [49] Fagan, M., 1986. Advances in Software Inspections. *IEEE Transactions on Software Engineering*, vol. 12, Issue 7, pp. 744-751.
- [50] Fazal-e-Amin, Ahmad K.M., and Alan, O., 2012, An Evolutionary Study of Reusability in Open Source Software, Proceeding of International Conference on Computer & Information Science (ICCIS), pp. 967-972.
- [51] Fazal-e-Amin, Ahmad, K.M., and Alan, O., 2011. A Review of Software Component Reusability Assessment Approaches. *Research Journal of Information Technology*, Vol. 3, Issue 1, pp. 1-10.
- [52] Fenton, N., Neil, M., Marsh, W. and Hearty, P., 2007, Project Data Incorporating Qualitative Factors for Improved Software Defect Prediction, Proceeding of the 3rd International Workshop on Predictor Models in Software Engineering, IEEE Computer Society Washington, USA, pp. 378-392.
- [53] Fenton, N., Neil, M., Marsh, W. and Hearty, P., 2008. On the Effectiveness of Early Life Cycle Defect Prediction with Bayesian Nets. *Empirical Software Engineering*, Vol. 13, Issue 5, pp. 499-537.

- [54] Fenton, N.E. and Pfleeger, S.L., 1998. *Software Metrics: A Rigorous & Practical Approach*. International Thomson Computer Press, London, United Kingdom.
- [55] Fiondella, L., Rajasekaran, S. and Gokhale, S., 2013. Efficient Software Reliability Analysis with Correlated Component Failures. *IEEE Transaction on Reliability*, Vol. 62, Issue 1, pp. 244-255.
- [56] Gaffney, J.E. and Davis, C.F., 1990, An Automated Model for Software Early Error Prediction (SWEEP), Proceedings of the 13th Minnowbrook Workshop on Software Reliability, July 1990.
- [57] Georgieva, O. and Dimov, A., 2011, Software Reliability Assessment via Fuzzy Logic Model, Proceedings of the 12th International Conference on Computer Systems and Technologies, pp. 653-658.
- [58] Gerard, L.L., 1997, An Analysis of the ARIANE 5 Flight 501 Failure- A System Engineering Perspectives, Proceeding of the IEEE International Conference and Workshop on Engineering of Computer-Based Systems (ECBS '97), pp. 339-346.
- [59] Goel, A.L., 1985. Software Reliability Models: Assumptions, Limitations, and Applicability. *IEEE Transaction on Software Engineering*, Vol. SE–11, Issue 12, pp. 1411–1423.
- [60] Graham, D., Finzi, S. and Glib, T., 1993. *Software Inspection*. New York: Addison-Wesley, ISBN-10: 0201631814.
- [61] Gray, C.L., 2008. A Coupling Complexity Metric Suit for Predicting Software *Quality*. Thesis submitted to Polytechnic State University, California, pp. 1-71.
- [62] Hai, H., Chang-Hai, J., Kai-Yuan, C., Eric, W., and Aditya, P.M., 2013. Enhancing software reliability estimates using modified adaptive testing. *Information and Software Technology*, Vol. 55, Issue 2, pp. 288-300.
- [63] Hall, T., Beecham, S., Bowes, D., Gray, D. and Counsell, S., 2012. A systematic literature review on fault prediction performance in software engineering. *IEEE Transactions on Software Engineering*, Vol. 38, Issue 6, pp. 1276–1304.
- [64] Hazra, A., Ghosh, P., and Dasgupta, P., 2013. Formal Methods for Early Analysis of Functional Reliability in Component-Based Embedded Applications. *IEEE Embedded systems letters*, Vol. 5, Issue 1 pp. 8-11.
- [65] He, P., Li, B., Liu, X., Chen, J. and Ma, Y., 2015. An Empirical Study on Software Defect Prediction with a Simplified Metric Set. *Information and Software Technology*, Vol. 59, March 2015, pp. 170-190.
- [66] He, Z., Shu, F., Yang, Y., Li, M., and Wang, Q., 2012. An Investigation on the Feasibility of Cross-Project Defect Prediction. *Journal of Automated Software Engineering*, Vol. 19, Issue 2, pp. 167-199.
- [67] Hooshmand, A. and Isazadeh, A., 2008, Software Reliability Assessment Based on a Formal Requirements Specification, Proceedings of the Conference on Human System Interactions, Publisher IEEE Krakow, Poland, pp. 311-316.

- [68] Hsu, C.J. and Huang, C.Y., 2011. An Adaptive Reliability Analysis Using Path Testing for Complex Component-Based Software Systems. *IEEE Transactions on Reliability*, Vol. 60, Issue 1, pp. 158-170.
- [69] Hu, Q.P., Dai, Y.S., Xie, M. and Ng, S.H., 2006, Early Software Reliability Prediction with Extended ANN Model, Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06), vol. 02, pp. 234 - 239.
- [70] Ian S., 2006. *Software Engineering*. 8th Edition, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
- [71] IEEE, 1991. *IEEE standard glossary of software engineering terminology*. STD-729-991, ANSI/IEEE.
- [72] ISO, 2001. ISO/IEC 9126-1: Software Engineering- Product Quality –Part I: Quality Model. Geneva, Switzerland.
- [73] Jaiswal, G.P. and Giri, R.N., 2015. A Fuzzy Inference Model for Reliability Estimation of Component Based Software System. *International Journal of Computer Science and Technology*, Vol. 3, Issue 3, pp. 177-182.
- [74] Jiang, Y., Cukic, B. and Menzies, T., 2007, Fault Prediction Using Early Lifecycle Data, Proceeding of 18th IEEE International Symposium on Software Reliability Engineering (ISSRE), pp. 237-246.
- [75] Kai-Yuan, C., 1996. System Failure Engineering and Fuzzy Methodology: An Introductory Overview. *Fuzzy Sets and Systems*, Vol. 83, Issue 2, pp.113-133.
- [76] Khalsa, S.K., 2009, A Fuzzified Approach for the Prediction of Fault Proneness and Defect Density, Proceedings of the World Congress on Engineering, Vol. 1, pp. 218-223.
- [77] Kitchenham, B.A. and Pfleeger, S.L., 1996. Software Quality The Elusive Target. *IEEE Software*, Vol. 13, Issue 1, pp.12-21.
- [78] Kitchenham, B.A., Pickard, L.M., MacDonell, S.G. and Shepperd, M.J., 2001. What Accuracy Statistics Really Measure. *IEEE Software*, Vol. 148, Issue 3, pp. 81–85.
- [79] Klaus, P., Harald, H., Reinhold, A. and Manfred, B., 2012, Model-Based Engineering of Embedded Systems, the SPES 2020 Methodology. Springer, doi:10.1007/978-3-642-34614-9.
- [80] Koh, T.W., Selamat, M.H., Ghani, A.A. and Abdullah, R., 2008. Review of Complexity Metrics for Object Oriented Software. *International Journal of Computer Science and Network Security*, Vol. 8, Issue 11, pp. 314-320.
- [81] Kong, W., 2009. Towards a Formal and Scalable Approach for Quantifying Software Reliability at Early Development Stages. Ph.D. thesis University of Maryland.

- [82] Kong, W., Shi, Y. and Smidts, C.S., 2007, Early Software Reliability Prediction Using Cause-effect Graphing Analysis, 53rd Annual Reliability and Maintainability Symposium (RAMS 2007), January 22-25, 2007, pp. 173 - 178.
- [83] Kumar, A. and Dhanda, N., 2015. Reliability Estimation of Object-oriented Software: Design Phase Perspective. *International Journal of Advanced Research* in Computer and Communication Engineering, Vol. 4, Issue 3, pp. 573-577.
- [84] Kumar, K.S., 2009. *Early Software Reliability and Quality Prediction*. Ph.D. thesis, Indian Institute of Technology Kharagpur, Kharagpur, India.
- [85] Kumar, K.S. and Misra, R.B., 2008, An enhanced model for early software reliability prediction using software engineering metrics, Proceedings of 2nd International Conference on Secure System Integration and Reliability Improvement, pp. 177–178.
- [86] Lahami, M., Krichen, M. and Idani, A., 2010, A Generic Process to Build Reliable Distributed Software Components From Early to late stages of software development, IEEE International Conference on Computer Engineering and Systems (ICCES), pp. 287-292.
- [87] Leffingwell, D. and Widrig, D., 2000. Managing Software Requirements: A Unified Approach. Reading, MA: Addison Wesley Publishing Co., 2000. ISBN: 02016-15932.
- [88] Li, M., 2002. On the Nature of Relationships between Measures and Reliability. Ph.D. Dissertation in Materials and Nuclear Engineering, College Park, University of Maryland.
- [89] Li, M. and Smidts, C., 2003. A ranking of software engineering measures based on expert opinion. *IEEE Transaction on Software Engineering*, Vol. 29, Issue 9, pp. 811–824.
- [90] Li, M., Zhang, H., Wu, R., Zhou, Z.H., 2012. Sample-based Software Defect Prediction with Active and Semi-supervised Learning. *Journal of Automated Software Engineering*, Vol. 19, Issue 2, pp. 201-230.
- [91] Linda, M. and Brennan, M.C., 2006. *Measuring Complexity*. John Wiley & Sons Inc, pp. 54-78.
- [92] Littlewood, B., and Verrall, J., 1973. A bayesian reliability growth model for computer software. *Journal of the Royal Statistical Society*, Vol. 22, Issue 3, pp. 332–346.
- [93] Lopez, V., Montero, F. and Javier, 2008, Fuzzy logic for formal specification of systems, IADIS International Conference on Intelligent Systems and Agents, pp. 215-218, ISBN 978-972-8924-60-7.
- [94] Luqi and Joseph A.A., 1997. Formal methods: promises and problems. *IEEE Software*, Vol. 14 Issue 1, pp.73-85.

- [95] Lyu, M.R., 1996. *Handbook of Software Reliability Engineering*. IEEE Computer Society Press, Los Alamitos, California.
- [96] Lyu, M.R., 2007. Software Reliability Engineering: A Road Map. Future of Software Engineering (FOSE' 07), pp. 153-170.
- [97] Lyu, M.R. and Cai, X., 2007. *Fault-Tolerant Software*. Encyclopedia on Computer Science and Engineering, Benjamin Wah (ed.), Wiley.
- [98] Ma, Y., Luo, G., Zeng, X. and Chen, A., 2012. Transfer learning for cross-company software defect prediction. *Information and Software Technology*, Vol. 54, Issue 3, pp. 248–256.
- [99] Maa, Y., Zhua, S., Qin, K. and Luo, G., 2014. Combining the Requirement Information for Software Defect Estimation in Design Time. *Information Processing Letters*, Vol. 114, Issue 9, pp. 469-474.
- [100] McCall, J.A., Richards, P.K., Walters, G.F., 1977. *Factors in software quality*, RADC (Rome: Rome Air Development Center), TR-77-369.
- [101] MacDonell, S.G., 1997. Establishing relationships between specification size software process effort in case environment. *Journal of Information and Software Technology*, Vol. 39, Issue 6, pp. 35–45.
- [102] Mamdani, E.H., 1977. Applications of fuzzy logic to approximate reasoning using linguistic synthesis. *IEEE Transaction on Computers*, Vol. 26, Issue 12, pp. 1182– 1191.
- [103] Manfred, B. and Ketil, S., 2001. Specification and Development of Interactive Systems-Focus on Streams, Interfaces, and Refinement. *Monographs in Computer Science*, Springer, doi:10.1007/978-1-4613-0091-5.
- [104] Martin, J., 1986. An Information Systems Manifesto. 1st Edition, Upper Saddle River, New Jercy, USA: Prentice Hall PTR, ISBN:0134647696.
- [105] Martin, N., Fenton, N., Nielson, L., 2000. Building large-scale Bayesian networks. *The Knowledge Engineering review*, Vol. 15, Issue 3, pp. 257–284.
- [106] Matthews, C., 2002, Fuzzy concepts and formal methods: a sample specification for a fuzzy expert system, Proceedings of IEEE International Conference on Fuzzy Systems, (FUZZ-IEEE'02), pp. 1150-1155.
- [107] Mizuno, O. and Hata, H., 2009. Yet another Metric for Predicting Fault-Prone Modules. Advances in Software Engineering Communications in Computer and Information Science, Springer, Vol. 59, pp. 296-304.
- [108] Mohanta, S., Vinod, G., Ghosh, A. and Mall, R., 2010. An Approach for Early Prediction of Software Reliability. ACM SIGSOFT Software Engineering Notes, Vol. 35, Issue 6, pp. 1-9.

- [109] Mohanta, S., Vinod, G. and Mall, R., 2011. A Technique for Early Prediction of Software Reliability based on Design Metrics. *International Journal of System* Assurance Engineering and Management, Vol. 2, Issue 4, pp. 261-281.
- [110] Musa, J.D., 1975. A theory of software reliability and its application. *IEEE Transaction on Software Engineering*, Vol. SE-1, Issue 5, pp. 312–327.
- [111] Musa, J. and Okumoto, K., 1987. Software Reliability: Measurement, Prediction, Application. New York: McGraw-Hill Book Company, 1987. ISBN: 0-07-044093-X.
- [112] Mustafa, K. and Khan, R.A., 2005. Quality Metric Development Framework. *Journal of Computer Science*, Vol. 1, Issue 3, pp. 437-444.
- [113] Neumann, P.G., 1988, Illustrative Risks to the Public in the Use of Computer Systems and Related Technology, International Conference on policy issues in information and communication technologies in medical applications, 29-30 Sept. 1988, pp. 63-68.
- [114] Ogheneovo, E.E. 2014. Software Dysfunction: Why Do Software Fail?. Journal of Computer and Communications, Vol. 2, April 2014, pp. 25-35.
- [115] Okutan, and Yildiz, O.T., 2014. Software Defect Prediction using Bayesian Networks. *Empirical Software Engineering*, Vol. 19, Issue 1, pp. 154-181.
- [116] Palviainen, M., Evesti, A. and Ovaska, E., 2011. The Reliability Estimation, Prediction and Measuring of Component- Based Software. *Journal of System and Software*, Vol. 84, Issue 6, pp. 1054-1070.
- [117] Pandey, A.K. and Goyal, N.K., 2010. Predicting Fault-Prone Software Module Using Data Mining Technique and Fuzzy Logic. *International Journal of Computer* and Communication Technology, Vol. 2, Issue 2,3,4, pp. 56-63.
- [118] Pandey, A.K. and Goyal, N.K., 2013. *Early Software Reliability Prediction*. Springer, India.
- [119] Pandey, A.K., Smith, J., and Diwanji, V., 2012, Cost effective reliability centric validation model for automotive ECUs, Proceeding of 23rd IEEE International Symposium on Software Reliability Engineering, Dallas, Taxes, USA, pp. 38–44.
- [120] Pavol, C., Martin, C., Thomas, A.H., and Arjun, R., 2014. Interface simulation distances. *Theoretical Computer Science*, Vol. 560, Issue 5, pp. 29-42.
- [121] Pavol, C., Thomas, A.H. and Arjun, R., 2010, Simulation Distances, In:CONCUR 2010 - Concurrency Theory, Lecture Notes in Computer Science Vol. 6269, Springer Berlin Heidelberg, pp. 253-268.
- [122] Pfleeger, S.L. and Atlee, J., 2006. *Software Engineering: Theory & Practice.* 3rd Edition, Upper Saddle River: Pearson Education, Inc., ISBN: 0-13-146913-4.
- [123] Pham, H., 2006. *System Software Reliability*. Reliability Engineering Series, London Springer.

- [124] Pressman, R.S., 2005. *Software engineering: A practitioner's approach*. 6th edition New York: McGraw-Hill Publication.
- [125] Radjenovic, D., Hericko, M., Torkar, R. and Zivkovic, A., 2013. Software Fault Prediction Metrics: A Systematic Literature Review. *Information and Software Technology*, Vol. 55, Issue 8, pp.1397-1418.
- [126] Reibman, A.L. and Veeraraghawan, M., 1991. Reliability Modeling: An Overview for System Design. *IEEE Computer Society*, Vol. 24, Issue 4, pp. 49-57.
- [127] Ritika, W., Ahmed, P., Qasim, M., 2012. New paradigm for software reliability estimation. *International Journal of Computer Applications*, Vol. 44, Issue 14, pp. 39-44
- [128] Rizvi, S.W.A., Singh, V.K. and Khan, R.A., 2016a. The State of the Art in Software Reliability Prediction: Software Metrics and Fuzzy Logic Perspective. *Advances in Intelligent Systems and Computing*, Springer, Vol. 433, pp. 629-637.
- [129] Rizvi, S.W.A., Singh, V.K. and Khan, R.A., 2016b, Revisiting Software Reliability Engineering with Fuzzy Techniques, Proceedings of the 3rd IEEE International Conference on Computing for Sustainable Global Development, IndiaCom–2016. 16-18 March, 2016. New Delhi, pp. 948-952.
- [130] Rizvi, S.W.A., Singh, V.K. and Khan, R.A., 2016c. Fuzzy Logic based Software Reliability Quantification Framework: Early Stage Perspective (^{FL}SRQF). 12th International Conference on Data Mining and Warehousing (ICDMW-2016), *Elsevier Procedia-Computer Science. (Will be published at www.sciencedirect.com* by August 2016) (Accepted Paper)
- [131] Rizvi, S.W.A., Singh, V.K. and Khan, R.A., 2016d. A Review on the Application of Fuzzy Logic in Software Fault Prediction. *Indian Journal of Science and Technology*. (Will be published by August 2016) (Accepted Paper)
- [132] Rizvi, S.W.A., Singh, V.K. and Khan, R.A., 2015, Reliability Prediction at Software Requirements Stage: A Review, *Emerging Trends in Information Technology, Shroff Publishers*, ISBN: 978-93-5213-026-9, pp.43-48. (Book Chapter)
- [133] Rizvi, S.W.A., Singh, V.K. and Khan, R.A., 2014, Role of Formal Methods in Software Requirements, Proceeding of the conference on information Security Challenges, Vol. 1, Issue 1, pp. 122-126.
- [134] Rizvi, S.W.A., Singh, V.K. and Khan, R.A., 2013. Improving Software Requirements through Formal Methods. *International Journal of Information and Computation Technology*, Vol. 3, Issue 11, pp. 1217-1223.
- [135] Rome Laboratory, 1992. *Methodology for Software Reliability Prediction and Assessment*. TechRep RL-TR-92-52, Vol. 1-2.
- [136] Ross, T.J., 2010. *Fuzzy Logic with Engineering Applications*. 3rd Edition, John Wiley and sons.

- [137] Schick, G.J., and Wolverton, R.W., 1978. An analysis of competing software reliability model. *IEEE Transaction on Software Engineering*, Vol. SE-4, Issue 2, pp. 104–120.
- [138] Sheldon, F., 1992. Reliability Measurement from Theory to Practice. *IEEE Software*, Vol. 9, Issue 4, pp 13-20.
- [139] Si, Y.J., Yang, X.H., Wang, X.Y., Huang, C. and Kavs, A.J., 2011, An Architecture-Based Reliability Estimation Framework through Component Composition Mechanisms, Proceeding of 2nd International Conference on Computer Engineering and Technology, Chengdu, 16-18 April 2010, pp. 165-170.
- [140] Smidts, C.S. and Li, M., 2000, Software Engineering Measures for Predicting Software Reliability in Safety Critical Digital Systems. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington: USNRC, Technical Report NUREG/GR-0019.
- [141] Smidts, C.S., Stutzke, M. and Stoddard, R.W., 1998. Software Reliability Modeling: An Approach to Early Reliability Prediction. *IEEE Transactions on Reliability*, vol. 47, Issue 3, pp. 268-278.
- [142] Smidts, C.S., Sova, D. and Mandela, G.K., 1997, An Architectural Model for Software Reliability Quantification, The Eighth International Symposium On Software Reliability Engineering, Vols. 2-5, pp. 324 - 335.
- [143] Standish Group International, Inc., *the Standish Group CHAOS Report*, 1995. Available online at www.standishgroup.com/chaos.html.
- [144] Thomas, A.H. and Jan, O., 2014, Model Measuring for Hybrid Systems, Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, ACM, New York, USA, pp. 213-222.
- [145] Tripathi, R. and Mall, R., 2005, Early Stage Software Reliability and Design Assessment, 12th Asia-Pacific Software Engineering Conference (APSEC'05), pp. 619-628.
- [146] Tyagi, K. and Sharma, A., 2014a. Significant Factors for Reliability Estimation of Component Based Software Systems. *Journal of Software Engineering and Applications*, Vol. 7, Oct. 2014, pp. 934-942.
- [147] Tyagi, K., and Sharma, A., 2014b. An adaptive neuro fuzzy model for estimating the reliability of component-based software system. *Applied Computing and Informatics*, Vol. 10, Issue 1-2, pp. 38–51.
- [148] Tyagi, K. and Sharma, A., 2012. A rule-based approach for estimating the reliability of component-based systems. *Advances in Engineering Software*, Vol. 54, Issue 12, pp. 24–29.
- [149] Tyagi, K., and Sharma, A., 2014c. A Heuristic Model for Estimating Component-Based Software System Reliability Using Ant Colony Optimization. World Applied Sciences Journal, Vol. 31, Issue 11, pp. 1983-1991.

- [150] Vasileios, K., 2015, A Formal Approach based on Fuzzy Logic for the Specification of Component-Based Interactive Systems, Formal Engineering approaches to Software Components and Architectures (FESCA'15), Vol. 178, pp. 62-76.
- [151] Victoria, L., 2011, Formal Engineering with Fuzzy Logic, Proceedings of the Sixth International Conference on Intelligent Systems and Knowledge Engineering, Shanghai, China, (ISKE2011), Springer Berlin Heidelberg, Vol. 123, pp 643-652.
- [152] Vliet, H.V., 2008. Software Engineering: Principles and Practice. 3rd Edition, Hoboken, NJ: John Wiley & Sons, ISBN: 9780470031469.
- [153] Walkerden F. and Jeffery R., 1999, Analogy, Regression and Other Methods for Estimating Effort and Software Quality Attributes, Proceeding of European Conference Optimizing Software Development and Maintenance, pp. 37-46.
- [154] Yadav, A., and Khan, R.A., 2012a, Reliability Quantification of an Object-Oriented Design: Complexity Perspective. Proceedings of the Second International Conference on Computer Science, Engineering and Applications (ICCSEA 2012), May 25-27, 2012, New Delhi, Advances in Intelligent and Soft Computing, Springer, Vol. 166, pp 577-585.
- [155] Yadav A. and Khan R.A., 2011, Class Cohesion Complexity Metric (C₃M), Proceedings of International Conference on Computer and Communication Technology (ICCCT-2011), pp. 363-366.
- [156] Yadav A. and Khan R.A., 2012b, Development of Encapsulated Class Complexity Metric, International Conference on Computer, Communication, Control and Information Technology (CCCIT-2012), Procedia Technology, pp. 754-760.
- [157] Yadav, A. and Khan, R.A., 2009a, Complexity: A Reliability Factor, IEEE International Advance Computing Conference (IACC09), March 6-7, 2009, Patiala, pp. 2375-2378.
- [158] Yadav, A. and Khan, R.A., 2009b. Measuring Design Complexity–An Inherited Method Perspective. *ACM Software Engineering Notes*, Vol. 34, Issue 4, pp. 1-5.
- [159] Yadav, D.K., Chaturvedi, S.K. and Misra, R.B., 2012. Early Software Defects Prediction Using Fuzzy Logic. *International Journal of Performability Engineering*, Vol. 8, Issue 4, pp. 399-408.
- [160] Yadav, H.B. and Yadav, D.K., 2014. Early Software Reliability Analysis using Reliability Relevant Software Metrics. *International Journal of System Assurance Engineering and Management*, pp.1-12.
- [161] Yadav, H.B. and Yadav, D.K., 2015. A Fuzzy Logic based Approach for Phasewise Software Defects Prediction using Software Metrics. *Information and Software Technology*, Vol. 63, July 2015, pp. 44-57.

- [162] Yadav, O.P., Singh, N., Chinnam, R.B. and Goel, P.S., 2003. A fuzzy logic based approach to reliability improvement during product development. *Reliability Engineering and System Safety*, Vol. 80, Issue 1, pp. 63–74.
- [163] Yin, M.L., Hyde, C.L. and James, L.E., 2000, A Petri-Net Approach for Early-Stage System-Level Software Reliability Estimation, Proceedings of Annual Reliability and Maintainability Symposium (RAMS'00), pp. 100-105.
- [164] Ying, M., Shunzhi, Z., Ke, Q., and Guangchun, L., 2014. Combining the requirement information for software defect estimation in design time. *Information Processing Letters*, Vol. 114, Issue 9, pp. 469–474.
- [165] Yong, C. and Qingxin, Z., 2008, Improved Metrics for Encapsulation Based on Information Hiding, 9th International Conference for Young Computer Scientists, IEEE computer society, pp: 742-724.
- [166] Yuan, D. and Zhang, C., 2011, Evaluation Strategy for Software Reliability Based on ANFIS, Proceedings of the IEEE International Conference on Electronics and Communications and Control (ICECC), pp. 3738-3741.
- [167] Zadeh, L.A., 1989. Knowledge representation in fuzzy logic. *IEEE Transactions on Knowledge and Data Engineering*, Vol. 1, Issue 1, pp. 89–100.
- [168] Zhang, X. and Pham, H., 2000. An analysis of factors affecting software reliability. *Journal of Systems and Software*, Vol. 50, Issue 1, pp. 43–56.
- [169] Zheng, Z. and Lyu, M.R., 2010, Collaborative Reliability Prediction of Service-Oriented Systems. 32nd International ACM/IEEE Conference on Software Engineering, Cape Town, 2-8 May 2010, pp. 35-44.