
1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

In today’s world software is playing a highly significant role in our life, and hence, it

is being used in different ways than ever before. Software systems are pervasive in

all aspects of society, from electronic voting machine to online shopping. An

important part of our daily life is mediated by software. Software has a major impact

over the telecommunication, transportation, industrial process, military,

entertainment, offices, aircrafts or even wrist watches and home appliances. The

nature and complexity of software have changed significantly in the last two decades.

The software has seen many changes since its initiation. Software industry has also

progressed at a rapid speed through the computer revolution and recently the network

revolution has been triggered and accelerated by the explosive spread of the internet

and most recently the World Wide Web. A major problem of software industry is its

inability to develop bug free software. Software industry has been delivering

exponential increase in price and performance but still the problems with software

are not decreasing. Software still come late; exceed budget and is full off residual

faults/errors.

Software development process normally focus on avoiding errors, identifying and

correcting software faults that do occur, and predicting software quality and

reliability after development. It is well understood fact that producing high quality

software is not an advantage but is an essential requirement. It was discussed by

2

Arora et al. (2011), Jalote (2012), Pizzi et al. (2013) & Amid et al. (2013) that

majority of the industries not only fails to produce high quality software for their

customers but also do not recognize the appropriate quality attributes. The potential

impact of software errors on business, human life and environment have grown. It

increasingly breaks more and more critical functionalities within software products

and business processes. Our society is highly dependent on software. Failures of

software can contribute or cause to serious accidents that result in injury, death,

major financial loss or significant environment damage. Such software accidents

have already happened and without intervention. The increasingly pervasive use of

software especially in areas such as transportation, health care, and broader

infrastructure may possibly make them more frequent and more serious.

Software testing is one of the most famous ways of promising to produce error/bug

free quality software; the helpfulness of testing decides the quality of developed

software. On the other hand, testing has now become a tedious task and a costly

activity because of the rapidly increasing size and complexity of software. A latest

survey done by Athanasiou et al. (2014), Felderer et al. (2014), Zheng and Bundell

(2008) & Mao et al. (2007) reveals that the cost incurred in testing often range from

40% to 50% of the entire cost involved in software development. Software testing is

a financial problem strongly intertwined with nearly all major technical issues in

development life cycle.

Objective of software engineering is to create high quality software in time and

within budget. If a product is meeting its requirements, we may say it is a superior

quality product. The whole thing is measured with respect to requirements and if it

matches, product is a quality product. Quality has become more important with our

3

increasing dependence on software. In the past decades, the demand for quality in

software products has been increasingly emphasized.

The next section describes software quality.

1.2 SOFTWARE QUALITY

The 1990s and beyond is regarded as the quality era. In this era of information age,

quality has been brought to the center of software development life cycle, as

exemplified in capability maturity model. Different people understand different

meanings of quality like: ‘Conformance to requirements’, ‘Fitness for the purpose’,

‘Level of satisfaction’ etc. In the environment of software engineering, software

quality measures how well software is designed (quality of design) and how well the

software conforms to that design (quality of conformance).Even though there are

several definitions, it is frequently described as the 'fitness for purpose' of a part of

software. One of the challenges of software quality is that everybody feels that they

understand it but may not be able to clearly express the same. Software quality may

be defined as conformance to openly stated functional and performance

requirements.

In modern software development industry, despite knowing the benefit as well

necessity of delivering quality product in market, expected level of quality are

becoming more challenging and crucial. It was discussed by Xie et al. (2014), Huang

et al. (2013), Elish et al. (2011), Gupta et al. (2005) & Dromey (1995) that with the

ever increasing size and complexity of software applications, software industries lack

to deliver the quality product and even some times some quality attributes are

neglected. In this highly competitive software industry, companies are habitually

trying to meet the release dead line that usually reduces the testing time. As a result,

4

the software product may not be correctly checked for the possible defects.

Therefore, we cannot take the quality assurance part of each software product

carelessly and the fault prevention and fault detection have to be considered at every

possible step of development life cycle.

Measuring software quality is not a new theme, but it has been investigated for years

in software engineering discipline. Since there is no clear understanding of ‘what

aspects of software quality should be considered qualitative’, it is not easy to find

suitable ways to measure it and other related aspects. While there is a uniform

agreement that we need quality software but the question of ‘how, when, and where

you measure and assure quality’ are far from the settled issues. It was highlighted by

Birolini et al. (2014), Singh et al. (2014) & Cinneide et al. (2011) that testing is the

course of action of scrutiny of any software to make sure that it performs as per the

specified requirements. Main intention will be making the testing process easy and

detecting the defects in effective and confident way. Ease of testing is measured in

terms on testability. Testability is a quality that refers to the capacity of a system to

be tested; it measures how simple it is to test in order to troubleshoot a given piece of

software. High testability increases the probability of revealing the faults and its early

measurement leads to the prospect of controlling fault, to facilitate and improve test

process.

The next section talks about software testability.

1.3 SOFTWARE TESTABILITY

Testability has always been an elusive concept and its correct measurement or

evaluation is a difficult exercise because various potential factors have effect on

software testability. Testability is one of the most important quality indicators. Its

5

measurement leads to the prospects of facilitating and improving a test process. The

notion of ‘software testability’ discussed by the experts Zuhoor & Martin (2003),

Ghosh (2002), Gross et al. (2001), Martin & Zuhoor (2000) has been a subject of

different interpretations. Consequently, several definitions of testability have been

published in the literature; the most general definition of software testability is, ease

of performing testing. Software testability is an external software quality attribute

that computes the software complexity and the effort required for testing. It facilitates

the testing process and makes the creation of better quality software possible.

Testability is also defined by Kansomkeat et al. (2008), Bach (1999) & Gelperin

(1999) as anything that makes software easier to test by making it easier to design

and execute tests.

The next Section shows the relationship between Testability and Quality.

1.4 TESTABILITY-A KEY FACTOR TO QUALITY

An accurate measure of software quality fully depends on testability measurement.

Software testability is a non functional requirement significant to the testing team

members and the end users, who are involved in user acceptance testing. However,

non functional requirements are quality requirements and make the customer happy

and satisfied. Software testability is one of the important concepts in system design,

and testing of software components and program. Developing programs with high

level testability constantly simplifies test process and reduces test cost, as well as

increases software quality. Software testability analysis may be useful to produce the

quality software. Testability is important as highlighted by Wang et al. (2009), Ma et

al. (2007) & Kolb et.al (2006) for both organizations and adhoc developers with a

high level of development process maturity. It reduces development cost in a

6

reliability driven process, and increases system reliability in resource limited

processes. Testability refers to the inherent ability or extent of ease with which

software undergoes through final testing.

As discussed by Khalid et al. (2010), Baudry & Traon (2005) how easily the faults

will be removed, depends upon the testability of the system. Most of the studies

calculate testability or more specifically the attributes that have impact on software

testability but at the code level of the development process. On the other hand,

testability measurement at the code level is a good indicator of effort estimation

process. Code level estimation leads to the late arrival of information in the software

development process. Measuring testability at later phase of development life cycle

after coding has been started may be very expensive and error prone. But if testability

is measured earlier in the development life cycle, before coding starts, exclusively at

design phase it may greatly reduce the development cost and rework. As a result it

can accelerate the development process and improve the software quality.

Since we are working to measure the testability of object oriented software, in next

Section we will discuss about object oriented design and how testability can be

measured for such software.

1.5 OBJECT ORIENTED DESIGN

Object oriented technology have become the most popular, familiar and most widely

used concept in software industry. Most of the focus of the object oriented approach

to software development has been on analysis and design phase. Object oriented

technology focuses on objects as the primary agents involved in a computation. Each

class of data and associated operations are collected into a single system entity. It

requires much significant effort at the initial stage in the development life cycle to

7

recognize objects and classes, attributes and operations and the relationships between

them. Object oriented programming is a basic technology as stated by Lee et.al

(2014), Azam et.al (2014) & Chidamber et.al (1994) that supports quality goals. Only

by knowing the syntax elements of language and/or the concepts involved in the

object oriented technology is far from being sufficient to produce quality software.

1.5.1 Design Properties

Object oriented design properties direct the designers what to support and what to

keep away. A number of measures have been defined so far to estimate object

oriented design discussed by Gupta et al. (2015), Chauhan et al. (2014) & Venkatesan et

al. (2013). There are several important themes of object orientation that are known to

be the basis of internal quality of object oriented design and support in the context of

testability measurement. These themes significantly include cohesion, coupling,

encapsulation and inheritance. Cohesion refers to the internal consistency within the

parts of the design. A class is cohesive when its parts are very much correlated. It

should be difficult to separate a cohesive class. Coupling designates the relationship

or interdependency among modules. Inheritance is the sharing of attributes and

operations among classes based on a hierarchical relationship. It is a mechanism

whereby one object acquires characteristics from one, or more other objects.

Encapsulation is a method to support information hiding and data abstraction. It hides

internal explanation of an object and show only external interface.

Practitioners and researchers frequently advocate that software testability should be

planned at the design phase of development process. Therefore it is necessary to

recognize object oriented design properties to quantify testability measures at design

phase of software development process. During identification of design artifacts

8

which have direct impact on testability measurement, a realistic view should be

considered. If we consider all artifacts and measures then they become high

complicated, ineffective or time consuming. Therefore, there is a need to identify

design artifacts and measures which affect the testability measurement process

directly. In order to estimate testability, its direct measures are to be recognized.

Design level properties like abstraction, inheritance, cohesion, coupling

encapsulation, etc. will be examined keeping in view their overall impact on software

testability.

The next section talks about testability factors.

1.6 TESTABILITY FACTORS

Researchers and practitioners have made significant amount of effort and

contribution in the way of investigating testability factors in common and object

oriented software in particular. It was discussed by the experts R.V. Binder (1994),

W. N. Lo & Haifeng (1998), S. Jungmayr (2002), Mouchawrab et al. (2005), Zhao et

al. (2006), Mulo (2007) & Bashir et al. (2012) that it is hard to get an understandable

view on all the prospective factors that have an effect on testability and the dominant

degree of these factors under different testing perspectives. It is conclusive from the

existing literature review that there is a difference among researchers, quality

controllers and practitioners in considering the factors while measuring testability in

general and absolutely at design phase.

Despite the fact that, getting a universally accepted set of testability factors is only

probable. Testability quality criteria are the characteristics which help to identify the

testability factors. Criteria present a more complete, actual definition of factors as

well as criteria common among factors assist to show the interrelationship between

9

factors. The criteria of the testability factor are the characteristics of the software

product or development cycle by which the factor can be judged or recognized. An

endeavor has been made to collect a set of testability factors that can affect software

testability. However, without any loss of generality, it comes into view to include the

factors namely, modifiability, simplicity, understandability, flexibility, traceability,

complexity, self descriptiveness and modularity. Out of these factors, some of them

have their direct impact in measuring testability of object oriented software design,

while others have less or negligible impact. An effort has been made to recognize the

testability factors that truly affect testability measurement at design phase. It was

evident from literature survey that Modifiability and Flexibility are the key testability

factors that truly affect software testability measurement and fulfill the quality

criteria.

1.6.1 Testability Measurement of Object Oriented Software

Measuring testability of Object Oriented Software is a criterion of key significance to

software designers, developers and the quality controllers. It is clear from existing

literature that researchers considered different phases of development life cycle for

testability measurement. Only a few research studies have been devoted to explore

the concept of testability measurement at design phase. It is a well understood truth

that a decision to modify the software design in order to improve testability index

after coding process has been started may be very costly and error prone. At the same

time measuring testability at design phase in the development life cycle may

significantly reduce the overall development cost. Badri et al. (2010), Kumar et al.

(2010), Dino Esposito (2008), John Hunt (2007) & Gao et al. (2005) argued that

testability should be measured as a key attribute in order to promise the quality

10

software. Practitioners repeatedly advocate that testability must be measured at the

design phase of development cycle. After the above discussion our conclusion is that

testability is a quality factor and its measurement always support for delivering

quality software.

1.6.2 Testability Measurement at Design Phase

Software design is the most creative and extremely important phase in software

development life cycle. Software design can play the major role to control and

improve the software quality. The quality of software design affects the overall

quality of final product. Software testability is a design issue and needs to be

addressed at the design phase. Measuring testability at a later phase in the

development life cycle leads to the late arrival of desired information, leading to late

decisions about changes in design and simply increases cost and rework. Therefore,

early estimation of testability initially at design phase in the development process

may improve quality and reduce testing efforts and rework. Our ultimate objective is

that it is during the design phase that testability estimation can yield the highest

payoff: design decisions can be made to increase testability before coding starts.

When the design meets the testability requirements, it can be implemented. Paying

attention to testability at design phase in the development process can potentially

enhance testing and significantly improves testing phase effectiveness. Our main goal

is to provide a comprehensive and complete framework and model to help in

measuring software testability in a practical approach, with a focus on the design

phase of object oriented development.

11

1.7 PROBLEM STATEMENT, ITS SOLUTION AND IMPACT OF

PROPOSED RESEARCH
It is evident from the above discussion that software testability should be

incorporated at design phase of development life cycle. Practitioners emphasized on

the need of having an organized and efficient approach for testability measurement.

Based on the explanation and conversation, there may be a vast set of research

question that need to be addressed. Some of the relevant ones are recognized and

stated as follows:

 What are the factors that straightforwardly affect software testability at design

phase?

 What is the impact of each factor on testability measurement?

 Can we develop a testability measurement model to measure software

testability at design phase of development life cycle?

In relation to the above questions that are pertinent to the concerned topic of the

research, the study was designed to be a mix of qualitative and quantitative in

nature. In order to address the above research problems, the problem statement

that has been formulated for the research is identified as ‘Measuring Testability

of Object Oriented Design at Design Phase’. The problem is further subdivided

into four sub problems enumerated as follows:

1) Development of the Testability Measurement Framework (TMFOOD) for

design phase. This framework gives a systematic way to develop testability

measurement model. The framework comprises of seven steps namely

Testability Factorization, Object Oriented Software Characterization,

12

Recognition of Metric, Correlation Establishment, Testability measurement

and Finalization, along with an added common step of Design Review.

2) Modifiability Measurement Model (MMMOOD) development: During

literature survey it was identified that modifiability is a key factor to

testability, and therefore this sub problem deals with developing a model to

measure modifiability. For this sub problem we develop the modifiability

measurement model with the help of object oriented design properties. This

model shows a high correlation among Modifiability, design properties

namely Encapsulation, Inheritance, Coupling and related metrics namely

Number of Methods (NM), Maximum Depth of Inheritance Tree (MaxDIT)

and Number of Association (NAssoc) respectively. Empirical validation

validates the proposed model for better level of acceptability.

3) Flexibility Measurement Model (FMMOOD) development: During literature

survey it was also identified that flexibility is a key factor to testability, and

therefore this sub problem deals with developing a model to estimate

flexibility. For this sub problem we develop the flexibility measurement

model with the help of object oriented design properties. This model shows a

high correlation among flexibility, design properties namely Encapsulation,

Coupling, Cohesion, Inheritance and related metrics Number of Methods

(NM), Number of Association (NAssoc), Number of Attributes (NA) and

Maximum Depth of Inheritance Tree (MaxDIT) respectively. Empirical

validation validates the proposed model for better level of acceptability.

4) Testability Measurement Model (TMMOOD) development: Modifiability and

Flexibility measures are used to develop Testability Measurement Model that

13

works at design phase. In order to reinforce the claim of correlation between

Testability with Modifiability and Flexibility, the proposed model has been

tested and justified with the help of statistical measures. Finally, it

incorporates the empirical validation of the testability measurement model.

1.8 IMPACT / SIGNIFICANCE OF PROPOSED RESEARCH WORK
The contributions made in the thesis bridges the gap between software industries

personal understanding of testability and researches related to the topic. All of

the contributions made are novel and are significant in the following manner:

 After applying developed Testability measurement framework and model,

any external mechanism is not required to control and improve software

testability rather it can be managed by the design constructs itself.

 Modifiability measurement model (MMMOOD) provides a Modifiability

Indexing (MI) benchmark for other researchers and designers.

 Flexibility measurement model (FMMOOD) provides a Flexibility Indexing

(FI) benchmark for other researchers and designers.

 For project ranking, Testability Indexing (TI) is possible using the Testability

Measurement model (TMMOOD). The developed model may be generalized

and used by others researchers.

 Designers are facing difficulties to appraise the less testable parts of their

design at an early stage. Early testability estimation may help to better

understand both the design and architecture information of the system.

 It may help to discover the underlying errors in the software design at the

early stage of software development life cycle, leading to avoidance of

unnecessary overheads.

14

 It may help to evaluate the quality of software and facilitate the estimation,

and planning of new activities, testing activities in particular.

 The chances of achieving customer satisfaction with testable products are

much higher.

1.9 THESIS OUTLINE

The Thesis is organized into the following 7 Chapters.

CHAPTER 1: INTRODUCTION

This chapter provides introduction to the area, software quality, software testability

measurement, testability related issues and its measurement at design phase, object

oriented design, problem statement, its solution and impact of proposed research and

thesis outlines.

CHAPTER 2: LITERATURE SURVEY

This chapter consists of a literature survey on relevant topics, prominently

including testability models. It includes comprehensive report on software testability

models and related issues, comparison of testability measurement models along with

a critical examination of the same and contextual inferences and conclusions.

CHAPTER 3: TESTABILITY MEASUREMENT FRAMEWORK.

This chapter presents a Testability Measurement Framework for design phase of

development life cycle. This framework provides a systematic way to develop

testability measurement model.

CHAPTER 4: MODIFIABILITY A KEY FACTOR TO TESTABILITY

This chapter discusses the proposed Modifiability Measurement Model (MMMOOD)

for object oriented design and established statistical correlation between

15

Modifiability and design properties. The chapter also provides empirical validation of

the Modifiability measurement model.

CHAPTER 5: FLEXIBILITY A KEY FACTOR TO TESTABILITY

This chapter illustrates the Flexibility Measurement Model (FMMOOD) for object

oriented design. The chapter also provides empirical validation of the Flexibility

measurement model.

CHAPTER 6: TESTABILITY MEASUREMENT MODEL

This chapter presents the Testability Measurement Model (TMMOOD) in terms of

Modifiability and Flexibility. Furthermore, the relationship of Testability with these

factors has been tested and justified with the help of statistical measures and

validated using experimental tryout; it incorporates the empirical validation of the

testability measurement model.

CHAPTER 7: SUMMARY AND CONCLUSION

Finally, this chapter highlights the major contributions and future direction of

research on the topic.

1.10 SUMMARY

In this chapter we have introduced the area with the help of concepts like software

quality, testability, testability of object oriented software etc. We illustrated

testability factors and testability measurement in general and exclusively at design

phase of development life cycle. Impact of testability measurement and its

importance at design phase has been analyzed for producing high quality software.

Subsequently problem statement, its solution and impact of proposed research is

listed and finally the chapter describes outline of the thesis.

In the next chapter, we will talk about literature survey.

