
1

CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

This chapter presents the result of a systematic literature review conducted to collect

evidence on software testability measurement of object oriented design. The first

research on software testability is appeared in the year 1975. It is adopted in Boehm

and McCall software quality model, which build the foundation of ISO-9126

software quality model. Since 1990s, software engineering community began to

introduce experimental research on software testability. Testability analysis has been

an important research area since 1990s, and became more pervasive in 21st century.

A number of researchers Stevens et al. (1974), Karoui et al. (1996), Kolb et al.

(2006), Behshid et al. (2009) & Nguyen et al. (2010) worked on software testability,

but in the perspective of conventional structured design. The question of software

testability has been revived with the object oriented development process by experts

R.V. Binder (1994), Voas & Miller (1995) & Voas J. M. (1996). Despite the fact,

that object oriented technology has now been widely used by the software industry,

but only a few research works have been devoted to explore the concepts of software

testability in object oriented systems. Unfortunately, these research works have not

been widely accepted and hence, not been adopted in practice by industry personnel.

Following sections systematically summarizes the relevant efforts made by

researchers in this area.

2

The existing literature on testability can be divided according to the software

development life cycle (SDLC) phases at which it is considered.

2.2 RELATED WORK

The critical review of the related work on the topic can be categorized as follows:

2.2.1 Testability at Analysis Phase

Study done by Goel et al. (2012) focused on the testability of the object oriented

software systems and identified that flexibility at the variable points of the object

oriented development, selected for framework instantiation, significantly influence

the testability of object oriented software at every level of testing. In this study,

author proposed a testability guidelines taking into account the flexible aspect of the

variable point to measure testability in the requirement analysis phase. The constraint

of this study is that the explanations are based on the hook documented framework

and an empirical validation has been needed for the proposed guidelines.

2.2.2 Testability at Design Phase

Many researchers explored testability at design phase which is explained as follows:

Karoui et al. (1996) discussed about communication software in order to handle the

complexity of tests for communication protocols and acknowledged it as the design

for testability (DFT). The key objective of DFT is to decrease the cost and the

complexity of test processes. Study stated testability movement and its analysis

require the use of estimation methods or measures. Estimation method of testability

helps software designers to recognize those parts of the requirement specifications

that are complex to test. Subsequently, theoretical guidelines can be proposed to

design for testability.

3

Baudry et al. (2005) highlighted the importance of individual types of class coupling

for testability metrics, as well as established a relation of coupling and class

interaction metrics that finalize testability. Study mainly concerned with the

testability relation to the testing effort focusing on object oriented static designs

based on UML (Unified Modeling Language) class diagrams. This work mainly

focused on the testability of UML class diagrams and approximates the number of

class interactions from UML class diagram, which can be applied to estimate the

testing effort and the design testability. Study also suggests for the improvement of

class interactions regarding reduction in number and complexity. The author gave a

graph based model, ‘the class dependency graph’, using UML class diagram features

in order to evaluate the complexity of class interactions which is used for the

testability measurement. Still the model is not validated and does not clearly indicate

the cause effect relation between class interactions metric and testability.

In the study done by Dino Esposito (2008) they argued that testability and security

are two major quality attributes to guarantee the quality of a developed software

system. Considering view of this fact author stated that it should be planned near the

beginning exclusively at the design phase of development life cycle. Dino argued in

his study that software testability is an outcome from a number of characteristics of

the software being tested. Study highlighted that software testability is a result from a

number of characteristics of the code being tested that the development team should

ideally guarantee: modifiable, control and simplicity. In conclusion, author

theoretically highlighted to design the classes for testability taking into consideration

of testability characteristics namely controllability, modifiability and simplicity.

Work done by Chowdhary, V. (2009) also argues on applying testability notions and

4

laying down rules to make sure testability consideration are made in features

planning and design phase. Study put the foundation by briefly going over testability

concept and discussed about the typical thought process in a test developers mind and

present key approaching into why practicing testability is complex and tedious task.

Author then present real life examples that he has encountered in his profession

which show how testability considerations could have made our testing simpler and

discussed the impact of testability on design phase of development life cycle.

Building from these examples, he presented a checklist for each of the testability

main beliefs. Study finally presents an exercise where we can apply available

checklist to a complex event processing module and understand the benefits of

applying testability concepts.

In the study done by Khan et al. (2009) proposed metrics based testability model for

object oriented design (MTMOOD).The developed model estimates testability with

the help of object oriented properties namely Encapsulation, Inheritance and

Coupling. Subsequently, the proposed model for the estimation of object oriented

software testability has been validated. In this study author measured object oriented

software testability directly, without including testability factors. On the other hand

researchers and practitioners have made significant amount of effort and contribution

in the way of investigating testability factors in common and object oriented software

in particular .For the reason that an accurate measure of software quality depends on

testability measurement, which in turn depends on the testability factors that can

affect object oriented software testability at design phase.

Study done by Anthony et al. (2009) described how the Lean 123 with automated

software tests approach yields significant cost saving and quality improvement

5

benefits in software products. Lean 123 is a Lean+ initiative that establishes a three

item checklist for executing tasks. The checklists are 1) Establish Clear Priorities 2)

Eliminate Bad Multitasking-Focus and Finish 3) Limit the Release of Work In

Process (WIP) to Deliver product. Furthermore, this study provided

recommendations on the best practices of designing for software testability using a

Lean 123 approach and technology enablers for testing frameworks such as NUnit

that can be applied to all software projects. The NUnit interface provides a visual

stop light report of the test results in which a green light represents a test that passed

and a red light represents a test that failed. Author claimed that designing for

testability should always be done at the design phase of development life cycle.

Moreover, no quantitative testability measurement model has been presented in this

study.

Work done by Aminata Sabane (2010) highlighted the importance of reducing

testing effort by using design patterns and anti patterns of micro architectures. Study

includes identification and quantification impact of micro architectures on system

testability and testing. For example, work presented a list of micro architectures and

request testers to recognize from this list, the simplest and the worst to test. Such an

analysis would allow collecting opinions on the testability of systems containing

micro architectures with design patterns and anti patterns. Depend on questionnaires

analysis; study will classify the micro architectures according to their impact on

system testability. Further based on outcomes, author proposed refactoring technique

and guidelines for making design decisions, and provides theoretical guidelines to

improve system testability at design phase of the development life cycle. In this study

the quantitative measure for improvement of testability was not given and theoretical

6

guidelines are not clear about the cause effect relation between design patterns and

anti patterns.

In the study done by Singh & Saha (2010) they highlighted the importance of

software contracts for testability improvement and reduce the testing effort of object

oriented class at design phase of development life cycle. Study established the

relationship between testability and software contracts. The same is explained

through an example of a queue class, written in C++ language. Authors claim to

reduce the number of test cases, to test a class with the help of software contracts.

Moreover, this method was not empirically validated and not applicable in the

context. Unfortunately; these outcomes have not been widely accepted and hence,

have not been adopted in practice by the practitioners. In addition, the guidelines

provided by the authors are not sufficient for both structural and behavioral

architecture.

Bousquet et al. (2010) highlighted testing procedure carried out to find faults/errors

in a system and briefly present the synchronous approach and its specificities with

respect to testability. Study used testability metrics to identifying parts of a design

that are complicated to test. In this study, author focus on two testability metrics

defined for system, written in LUSTRE/SCADE, is a declarative data flow language.

An intuitive interpretation was produces for these metrics. The objective of this

research is to confirm whether intuitive interpretation can be consolidated with actual

evidences. In this work, study focus on testability of synchronous reactive data flow

systems, expressed as controllability and Observability. Intuitively, they can be used

to detect low testable parts of the systems. Moreover, the reactive system outputs

usually depend on the system history, not on its current input. In this work author

7

told, validation of testability is a hard work. The main difficulty relies on the fact that

the effort to test is subjective and depends on each point of view.

Work done by Khatri et al. (2011) developed software reliability growth model

parameters and its impact on software testability. The Software Reliability Growth

Model (SRGM) is the technique, which can be used to measure the software

reliability, develop schedule status, test status, and monitor the changes in software

reliability performance. The overall impact and application of SRGM parameter

measures have been used in quantifying the testability of software. Study used failure

data of object oriented software, developed under open source software platform,

namely MySQL, Python and SQL Client. In this study, author has not given the

quantitative measure of software testability. However, only discussed theoretical

approach for measuring software testability. In this work it has been revealed that

earlier knowledge of proportion of fault of complexity in the software can simplify

the process of revealing faults and as a result testability of software can be improved.

2.2.3 Testability at Source Code Level

Testability at source code level considered by various researchers which is enlighten

as follows:

Voas et al. (1992) developed PISCES: a tool for predicting software testability. This

is the commercial software testability tool which is written in C++. PISCES

generates testability measures by creating an “instrumented” copy of the program and

afterward compiling and executing the instrumented copy, which is about 10 times as

large as the original source code, with inputs that are either supplied in a file or

PISCES uses random distributions from which it generates inputs. PISCES testability

postprocessor inputs all prospect measures and allows the user numerous choices of

8

how the testability will be presented: moreover for a location, component or the

whole program. Study argued this tool improves testing, debugging and hence

improves software quality.

Voas & Miller (1996) have dealt with software testability metrics that depends upon

inputs and outputs artifacts of a software module. To quantify testability, authors

proposed propagation infection and execution (PIE) analysis technique; but

quantifying testability through the PIE analysis technique was very complex and has

high complexity. This is a dynamic method for statistically measuring the effects that

a location of a program has on the program’s computational behavior. PIE analysis

gathers information relating to the semantics of faults. It reveals the existences of

faults not the method that directly evaluate the ability of inputs to reveal the

existences of faults. Instead, it identifies locations in a program where faults exist,

that more likely to remain undetected during testing. Due to these limitations this

technique is not adopted by industry personals.

Fault/Failure method given by Voas & Miller (1996) is based on fault/failure

architecture and it estimates the probability of the three characteristics of a location,

the probability that the location is executed on inputs, selected from the assumed

input distribution of the software.

1. The probability that if a mutant exists at this location, it will adversely,

change the states.

2. The probability that if the data state is adversely changed that will propagate

to the output.

3. At a certain location, a probable fault/error could result in a failure if and

only if:

9

 A fault must be executed.

 The fault must have an effect on the condition of the program in a way

different than what the state of program would have been handle the fault

not existed. This is termed as having an infection in the state.

 The erroneous program state must propagate to an output state.

If the possibility of a program’s failure is confined to this model, the probability that

a fault/error will turn into a failure, will be the product of execution probability,

infection probability and propagation probability. Furthermore, a lower bound

testability of a program is achieved as the least product above over all location in the

program.

Work done by Baudry et al. (2001) discussed two configurations of object oriented

software that can weaken its testability. Study described particular design patterns

micro architectures, widely used in the object oriented domain, for achieving basic

refinement, operators using the state design pattern and the Abstract Factory. At a

first sight, it shows the normal way of including such testability constraints to a UML

design, study found that this rules are very complex to implement in OCL (Object

Constraint Language) and may lead to an unrealistic solution. Another option is to

classify the pattern applications in respect of UML diagrams at the Meta model level

of the UML: the models for the patterns are classified in terms of roles. This Meta

model defines what a pattern application is, and embeds the desired testability

characteristics at a general level. Finally author produced automatic verification tools

to check whether a pattern is safely implemented at code level or not.

10

From the study of Bruntink & Deursen (2004) the class testability can be assessed by

analyzing two categories of source code level factors namely, test case construction

factors and test case generation factors. In addition, study presents a source code

metrics for exploring the testability of object oriented Java system, and identified

testability factors through source code metrics. This study is mainly concerned with

identifying and evaluating the factors of testability in object oriented software and

metrics related to the factors, which are been supported by the case studies. The

authors used the source code analysis for characterizing the software testability. In

this research, authors identify possible relevant metrics to predict the class testability

and analyzed the approach in theoretical manner.

Work done by Liang Zhao (2006) proposed beta distribution method to indicate

software testability. When integrating testing effectiveness, author theoretically

proved that the beta distribution method can speed up testing process and test value

at the same time. The proposed work can be separated into two parts to achieve the

study objective. The first part of this work is to highlight the importance of

distribution method as testability indication. Subsequently, second part of the study

tries to find ways to deduce the beta distribution for related software and test

criterion information. The second part of this study is further divided into three steps;

first step is to classify appropriate testing criterion's effectiveness measure. The

objective of second step is to introduce criterion's effectiveness information. The

third step tries to prove that when integrating effectiveness information, the

distribution method can provide reasonable measurement on the quantity and quality

of testing.

11

Work done by Gonzalez et al. (2009) presented a qualitative model for runtime

testability that complements Binder’s classical testability model, and provide a

generic guidelines for assessing the degree of runtime testability of a software,

depend on the ratio of what can be tested at the runtime versus what would have been

tested throughout development life cycle. A measurement is devised for the client

server architecture based on test coverage with the help of graph model of the

system’s architecture. Subsequently, two software testability studies are presented for

two component based systems, showing how to measure the runtime testability of a

system. Moreover, this approach is only suitable for data flow or client server

architectures.

In the study done by Tsung et al. (2009) author argued that research on software

testability has been developed in different perspectives. In the past, a dynamic

technique for quantifying software testability was proposed and called ‘propagation

infection and execution’ (PIE) approach. Previous research works show that

‘‘propagation infection and execution’ technique can complement of software testing.

Despite the fact that, PIE technique required a lot of computational effort in

measuring the testability of software components. Considering view of this fact,

author proposed an Extended PIE (EPIE) method to accelerate the previous PIE

analysis, depend on generating group testability as a replacement for component

testability. Study divided Extended PIE technique into three steps:

 Breaking a program into blocks.

 Dividing blocks into groups.

 Marking target statements.

12

To implement Extended PIE (EPIE) method, study further developed a mechanism

called ePAT (extended PIE Analysis Tool) to support for identify the components

which will be analyzed. The extra overhead is required in this study is to identify and

mark analyzed component before executing Extended PIE (EPIE) analysis.

Work done by Jianping Fu & Minyan Lu (2009) proposed a request oriented method

for testability measurement. Study stated testability measurement method is limited

there is maybe no appropriate method presented for testability measurement requests.

To solve this problem author used request oriented approach. This approach can

select appropriate elements from a self contained software testability measurement

guideline according to the different measurement requests to complete testability

measurement. Firstly, all testability measurement requests are identified. Secondly

testing requests is derived from testability estimation guidelines consisting of factors

related with software testability measurement of all kind of software. At last a new

measurement guideline is provided with the help of selected elements and results can

be measured based on the request of users. However, this approach was not validated

and applicable only at implementation stage of development life cycle.

2.2.4 Testability at Testing Phase

Many researchers explored testability at testing time which is explained as follows:

An approach adopted by Jungmayr (2002) shows a concept for estimating software

testability through integration testing. He identified local dependencies that

positively contribute and are responsible for overall testability. Jungmayr’s concept

used reduction metric to calculate the effect of individual factors in software

testability to find out required testability metric. This metrics has been introduced to

assess the impact of a particular dependency on a particular quality characteristic

13

(like testability). A value of reduction metrics bigger than zero in general means that

testability improves if dependency in removed. It is advocated that reduction metrics

can be used to rank dependencies based on their impact on the overall testability.

In the study done by Jianping et al. (2010) they summarized available methods of

software testability analysis from the aspect of test cost, sensitivity and testable

characteristics. By analyzing the analysis object, test strategies and measurement

results, the present state and shortage of software testability analysis are summed up.

According to the development trend of software testability analysis, some future

research directions are listed by author as following:

 Research for software testability analysis based on testable characteristics.

 Research for factor analysis of software testable characteristics.

 Research for software testability evaluation.

 Research for object oriented design testability analysis.

 Crossover research of above directions.

In the study done by Mourad and Fadel (2012) investigated experimentally the

relationship between object oriented metrics and testability of classes. Author

highlighted testability in the context of unit testing effort. Study collected data from

open source Java software systems for which JUnit test cases exist. To capture the

testing effort of classes, study used object oriented metrics to measure the matching

JUnit test cases. Classes were organized, according to the required JUnit testing

effort in two categories namely high and low. In order to calculate the relationship

between object oriented metrics and JUnit testing effort of classes, author used

logistic method. The findings in this work viewed as explanatory rather than

conclusive.

14

2.2.5 Testability at Development Life Cycle

Testability throughout development life cycle considered by various researchers

which is enlighten as follows:

In the study done by Voas & Miller (1992) suggested to take software testability

analysis into consideration throughout the development life cycle. This analysis can

be made from software requirement specifications, planning, designing and the

coding itself. Author highlighted the guidelines provided by software testability is

helpful during system design, implementation, testing, and quality assurance. In this

work, study has illustrated how testability with respect to random black box testing

has importance throughout the software development lifecycle. Besides, static

analysis of the domain range ratio (DRR) gives insight early in the specification and

design stages. In all these applications, testability gives a new perspective on the

relationship between software quality and ability to measure that quality.

R.V. Binder (1994) had done a work showing the importance for improving software

testability in system development life cycle. He proposed a fishbone model, which

shows that, software testability is a result of six factors: (1) Characteristics of the

representation (2) Characteristics of the implementation (3) Built in test capabilities

(4) The test suite (test cases and associated information) (5) The test support

environment (6) The software process in which testing is conducted. But

unfortunately all above factors are applicable only at later stages of development life

cycle. Binder’s work has no clear relationship with object oriented design constructs

and proposed testability factors. Moreover, proposed model was not validated and

not suited for measuring testability of object oriented software at initial stage of

development life cycle.

15

Work done by Jimenez et al. (2005) highlighted the benefits of improving the system

development life cycle by making specific improvements in the area of software

testing and validation. Study provided an overview of design for testability (DFT), its

application in hardware and software development process, and its relationship to

reliability and robustness. In addition, study demonstrated DFT is more expensive in

the case of short term development process and it is cheaper in the long term

development process. DFT can greatly decrease testing times and virtually removes

production delays as well as facilitating diagnosis and repair in the development

field. DFT will outcome in better fault isolation and fault coverage, shorter testing

time, good quality product, required shorter time to deliver in market, and lower

development lifecycle cost. As a result, authors provided only theoretical explanation

for above stated theories as well as he argued DFT is basically a management issue

and not a technology issue.

Work done by Mulo (2007) integrated the importance of testability measurement

throughout the software development life cycle. Author focused on improving the

controllability of a software project with minimal addressing of Observability

characteristics. Study highlighted controllability along with Observability can

become operational in practice, through strategy that are employed in the software

development life cycle to make testing easier. These strategies in the development

process should be considered in requirements and architecture specification, to

implementation. However, estimating testability during the entire development life

cycle is very expensive and error prone.

16

A complete charting of the existing models/methods has been done in Table 2.1.

Table 2.1: Comparison of Testability Measurement Models/Methods

S.N0. Researcher Title of Study Year Model/
Method

Validation SDLC
Phase

1 Goel et al.
Testability Estimation of
Framework Based
Applications

2012 Framework No Analysis
Phase

2 Karoui et
al.

Specification
Transformations and
Design for Testability

1996 DFT No

Design
Phase

3 Baudry et
al.

Measuring
Design Testability of a
UML Class Diagram

2005
Class
Dependency
Graph

No

4 Dino
Esposito

Design Your Classes for
Testability

2008 Design Tips No

5 V.
Chowdhary

Practicing Testability in
the Real World

2009 SOCK
Approach

No (Based
Experience)

6 Khan et
al.

Metric Based Testability
Model for Object Oriented
Design

2009 MTMOOD Yes

7 Anthony et
al.

A Lean Approach to
Designing for Software
Testability

2009 Lean
Approach

No

17

8 A. Sabane Improving System
Testability and Testing with
Micro Architectures

2010 Design
Pattern

No

Design
Phase

9
Singh &
Saha

Improving the Testability
of Object Oriented
Software through Software
Contracts

2010 Software
Contracts

No

10 Bousquet
et al.

Analysis of Testability
Metrics for Lustre/Scade
Programs

2010 Data Flow No

11 Khatri et
al.

Improving the Testability
of Object Oriented
Software During Testing
and Debugging Processes

2011 SRGM No

12 Voas et al. PISCES: A Tool for
Predicting Software
Testability

1992 PIE Method Yes

Coding
Phase13 Voas and

Miller
Dependability Certification
of Software Components 1996 PIE No

14 Voas and
Miller

A Tutorial on Software
Fault Injection

1996 Fault/Failure
Method

No

15 Baudry et
al.

Towards a ‘Safe’ Use of
Design Patterns to Improve
Object Oriented Software
Testability

2001 Testing
Conflict

No

18

16 Bruntink
et al.

Predicting Class Testability
using Object Oriented
Metrics

2004
Source
Code
Analysis

Theoretical
Justification

Coding
Phase

17 Liang Zhao A New Approach for
Software Testability
Analysis

2006
Beta
Distribution
Technique

Program
Test (Case
Study)

18 Gonzalez et
al.

A Model for the
Measurement of the
Runtime Testability of
Component Based Systems

2009
Component
Interaction
Graph

Conducted
Test

19 Tsai et al. A Study of Applying
Extended PIE Technique to
Software Testability
Analysis

2009
Extended
PIE
Technique

Conducted
Test

20 Jianping&
Minyan

Request Oriented Method
of Software Testability
Measurement

2009
Request
Oriented
Method

No

21 Jungmayr Testability Measurement
and Software Dependencies

2002 Integration
Testing

No

Testing
Phase22 Jianping et

al.
Present and Future of
Software Testability
Analysis

2010
Test cost
Analysis No

23
Mourad and
Fadel

Empirical Analysis of
Object Oriented Design
Metrics for Predicting Unit
Testing Effort of Classes

2012 Logistic
Methods Yes

19

24 Voas and
Miller

Improving the Software
Development Process using
Testability Research

1992 SDLC No

SDLC

25 R. V. Binder Design for Testability in
Object Oriented Systems

1994 Method is
not
Mentioned

No

26 Jimenez et
al.

Design for Testability 2005 DFT No

27 Mulo Design for Testability in
Software Systems 2007

Architecture
Specification No

After an exhaustive review, it is evident that testability measurement should be done

at design phase of development life cycle. To measure testability at design phase it is

important to identify commonly accepted testability factors. Now in the next Section

i.e. Section 2.3 we will discuss about the testability factors.

2.3 TESTABILITY FACTORS

It is evident from exhaustive literature survey that there is an opposition among

practitioners in taking into consideration the testability factors for measuring

testability of object oriented software in general and at design phase. A consolidated

table for the testability factors identified by various experts is concluded in Table 2.2.

It is clearly highlighted from the table that Observability, controllability, Flexibility,

Traceability, Understandability and Modifiability are the commonly accepted

testability factors.

20

Table 2.2: Testability Factors Consider by Various Experts

Testability
Factors

O
bs

er
va

bi
lit

y

C
on

tro
lla

bi
lit

y

Fl
ex

ib
ili

ty

Tr
ac

ea
bi

lit
y

U
nd

er
st

an
da

bi
lit

y

M
od

ifi
ab

ili
ty

Fa
ul

t l
oc

al
ity

Si
m

pl
ic

ity

C
om

pl
ex

ity

D
ev

el
op

m
en

t p
ro

ce
ss

Se
pa

ra
tio

n
of

 c
on

ce
rn

s

Author/Study

Binder (1994)

Bach (1999)

Jungmayr (2002)

Wang (2003)

Baudry et al. (2005)

Zaho et al. (2006)

E Mulo (2007)

Dino Esposito (2008)

Khatri et al. (2011)

Malla P. et al. (2012)

21

P. Nikfard (2013)

Joshi et al. (2014)

An effort has been made to recognize the testability factors that truly affect testability

measurement at design phase. Modifiability and Flexibility are the key testability

factors that truly affect software testability measurement and fulfill the quality

criteria, Modifiability quality criteria is understandability, traceability, self

descriptiveness and Flexibility quality criteria is simplicity and complexity.

Therefore, without any loss of generality, it comes into view realistic to include

Modifiability and Flexibility for testability measurement at design phase.

2.4 LITERATURE SURVEY ON MODIFIABILITY

The critical review of the related work on the topic can be summarized as follows:

In the study done by Kiewkanya et al. (2011) proposed a new metrics to assess

modifiability of object oriented design. These metrics can be measured with the help

of class diagrams. Proposed metrics viz. ModGen, ModAgg, ModCom, ModCAssoc,

ModAssocC, ModDep and ModReal developed by considering the number and the kind of

relationships among classes. In this study, for comparing modifiability of software

with different sizes, author introduced the concept of average and modifiability will

be estimated in the average case. To validate the new proposed metrics, a Pearson

correlation analysis between modifiability estimated by the proposed metrics and

human beings’ intuition was performed. The result shows that AvgModSys and

Modifiability score have a negative correlation.

22

Study done by Lulu et al. (2009) applied Wood’s task complexity model to propose a

general analytical model that describes the characteristics of maintenance tasks and

the analytical dimensions of modifiability independent of the individual maintainers.

In this study three analytical dimensions described task complexity viz. component,

coordinate, dynamic and total complexity is determined by all three dimensions. By

applying task analysis theory, the proposed model captures the complexity inherent

in the maintenance task independent of individual characteristics of maintainers. In

this work, author theoretically justify the proposed model provides greater insight

into the relationship between internal software attributes (e.g. structural measures)

and external attributes of maintenance process (e.g. effort).

Bengtsson et al. (2004) proposed scenario based software architecture analysis

methods that focus exclusively on modifiability. It consists of five major steps:

1. Set goal: determine the aim of the analysis

2. Describe software architecture: give a description of the relevant parts of the

software architecture

3. Elicit scenarios: find the set of relevant scenarios

4. Evaluate scenarios: determine the effect of the set of scenarios

5. Interpret the results: draw conclusions from the analysis results

ALMA distinguishes the following goals that can be pursued in software architecture

analysis of modifiability: maintenance prediction, risk assessment and software

architecture comparison. Study draw up an explanation of the software architecture.

This explanation will be used in the assessment of the scenarios. Unfortunately, it

contains insufficient detail to perform an impact analysis for each of the scenarios

23

and draw conclusions. Moreover, this approach is only suitable for client server

architectures.

It is evident from exhaustive literature survey on modifiability that no comprehensive

modifiability measurement model exists to measure modifiability of object oriented

software at design phase of development life cycle.

2.5 LITERATURE SURVEY ON FLEXIBILITY

The critical review of the related work on the topic can be summarized as follows:

In the study done by Xiaoguang & Bo (2013) highlighted flexibility is an essential

request and is also a way that must be taken during the establishment process of ERP.

Study proposed flexibility estimation model of ERP system depend on fuzzy-

analytic- network-process (FANP). The local weight of criterion and index is derived

by fuzzy preference programming (FPP) technique. An unweighted super matrix

depend on the network configuration of index system is developed, and the limit

super matrix is generated. In this study flexibility level of ERP system can be

estimated by the weights and scores of ERP. A numerical example is given by the

proposed method, and the result is shown that it can deal with this kind of problem.

However, this approach was not validated and applicable only establishment process

of ERP.

Work done by Jingchun et al. (2011) proposed non linear model to measure software

flexibility taking into account the relationship between operational control force and

deformation of the software. In this study software flexibility is calculated by the

second order cone programming (SOCP) approach. Second order cone program

(SOCP) a linear function is minimized over the intersection of an affine set and the

24

product of second order (quadratic) cones. Furthermore, no quantitative flexibility

measurement model has been presented in this study.

In the study done by Limin Shen & Shangping Ren (2010) introduced two new

concepts that are flexible change and Flexible Point (FXP). Flexible Point associated

with, a set of flexibility indices i.e. flexible degree, flexible distance, flexible

capacity and flexible force. Further study categorized flexible points into five

different types, namely potential FXP, current FXP, available FXP, required FXP and

used FXP and four different levels that are Self Adaptive FXP, High level User FXP,

developer Level User FXP and Low level User FXP,. In this study, author discussed

the associations and differences between Flexible Point (FXP) and FXP impact on

the software development process and quality. Elementary metric for software

flexibility such as flexible force, flexible degree, flexible capacity and flexible

distance are proposed. Computing process of software flexibility based on flexible

points (FXP) is represented in this study. But study failed to provide a formal proof

for the evaluation of flexible force and study need further improve function point

method to suit the measurement of flexible distance.

In the study done by Amnon et al. (2006) to measure software flexibility in precise

terms, author introduced the notion of evolution complexity and demonstrated how it

can be used to measure the flexibility of

(a) Programming paradigms that are Procedural Programs vs. Object Oriented

(b) Design architectural styles (Filters and Pipes, Abstract Data and Shared Data

Type)

(c) Software design patterns (Abstract and Visitor Factory)

25

Study also demonstrated how development complexity can be used to select the

flexible design policy and proposed development metric costs and recommended that

flexibility can be computed as the complexity of executing particular development

steps. In this work author highlighted the complexity of evolving implementations of

five recognized programming paradigms, architectural styles, and design patterns,

and demonstrated that evolution complexity corroborates intuitions and established

observations on the flexibility of these design policies. As a result, authors provided

only theoretical explanation for above stated theories In particular; the benefits from

the measurements proposed are the following:

1) Development complexity can be used to corroborate and quantify informal

claims on the flexibility of particular programming languages, architectural

patterns and design patterns.

2) Development complexity can be used to measure flexibility with varying degrees

of accuracy.

3) Development complexity can be used to select the design policy, given the class

of the most likely shifts to the problem.

In conclusion, the guidelines provided by the authors are not sufficient for both

architectural styles, and design patterns.

It is evident from exhaustive literature survey on flexibility that no comprehensive

flexibility measurement model exists to measure flexibility of object oriented

software at design phase of development life cycle.

2.6 OBJECT ORIENTED DESIGN PROPERTIES

Object oriented design overcomes the negative aspect of procedure oriented design.

Object oriented design treats data as an important element in the program

26

development and does not permit it to move freely within the system. The prominent

object oriented design properties are: Inheritance, Coupling, Cohesion and

Encapsulation. Object oriented software Properties that have affirmative impact on

testability measurement has been recognized and consolidated chart for the same is

given in Table 2.3.

Table 2.3: Object Oriented Design Properties Contributing in Testability

Measurement: A Critical Look

Design Parameters Cohesion Coupling Encapsulation Inheritance Abstraction

Author/Study

Gregor et al. (1996)

Bruce & Haifeng (1998)

Pettichord B. (2002)

Baudry et al. (2002)

M Bruntik (2004)

S. Mouchawrab (2005)

E Mulo (2007)

Khatri et al. (2011)

Phogat et al. (2011)

27

P. Malla et al. (2012)

Nikfard et al. (2013)

2.7 MAPPINGDESIGN PROPERTIES TO TESTABILITY FACTORS
Many experts tried to establish a relationship between object oriented design

properties and testability factors. A consolidated view of the same is given in Table

2.4. After an in depth evaluation of available literature on the topic, the relation

between object oriented design properties and testability factors, shown in Fig. 2.1

has been established.

Table 2.4: Mapping between Design Properties and Testability Factors based on
Experts Consideration

Author/Study

Testability
Factors

C
on

tr
ol

la
bi

lit
y

O
bs

er
va

bi
lit

y

M
od

ifi
ab

ili
ty

U
nd

er
st

an
da

bi
lit

y

T
ra

ce
ab

ili
ty

Fl
ex

ib
ili

ty

Object Oriented
Properties

Gregor et al. (1996)

Encapsulation

Baudry et al. (2002)

E Mulo (2007)

P. Malla et al. (2012)

Nikfard et al. (2013)

28

Bruce & Haifeng (1998)

Inheritance

Pettichord B. (2002)

E Mulo (2007)

Sujata et al. (2011)

P. Malla et al. (2012)

Nikfard et al. (2013)

Bruce & et al. (1998)

Coupling

Pettichord B.(2002)

S. Mouchawrab (2005)

E Mulo (2007)

P. Malla et al. (2012)

Bruce & et al. (1998)

Cohesion

Pettichord B. (2002)

Khatri et al. (2011)

Phogat et al. (2011)

29

Fig. 2.1: Mapping between Design Properties and Testability Factors

2.8 QUALITY CRITERIA OF COMMONLY ACCEPTED TESTABILITY
FACTORS

Criteria are the characteristics which classify the software quality factors stated by

the experts Pizzi (2013), Shaheen et al. (2009) & Pettichord B. (2002). The criteria of the

factors are the attributes of the software product or software production process by

which the factor can be judged or characterized. The relationship between the

commonly accepted testability factors and the quality criteria is listed below in Table

2.5.

30

Table 2.5: Commonly Accepted Testability Factors Quality Criteria

S.No. Factor Quality Criteria Mode

1 Flexibility

 Structured

 Augment ability
Criteria of Boehm quality

Mode

 Generality

 Independence

 Self- documentation

 Modularity

 Software independence

Criteria of McCall

quality Mode

 Complexity

 Concision

 Consistency

 Generality

 Modularity

 Self-documentation

 Expandability

 Simplicity

Criteria of Ming-Chang

Lee Mode

2 Traceability

 Correctness

 Documentation for other

system Cross reference

Criteria of Boehm quality

Mode

3 Understandability

 Consistency

 Structured

 Conciseness

 Self descriptiveness

 Legibility

Criteria of Boehm quality

Mode

31

 Consistency,

 Structure,

 Conciseness.

Criteria of Ming-Chang

Lee Mode

4 Modifiability

 Structure

 Augment ability

 Understandability

 Traceability

 Self descriptiveness

 Adaptability

Criteria of Boehm quality

Mode

5 Controllability

 Specific Design

 Expressiveness

 Understandability

Criteria of Bruce et al.

Mode

6 Observability

 Expressiveness

 Specific Design

 Structured

Criteria of Bruce et al.

Mode

There are following four major motivations for developing a list of criteria for

commonly accepted testability factors:

 Criteria provide a more absolute and real definition of factors.

 Criteria common between factors help to show the interrelation among factors.

 Criteria allow assessment and review metrics to be developed with greater

easiness.

 Criteria consent to identify that area of quality factors which may not be up to a

predefined acceptable standard.

The analysis of the relationship between testability factors and quality criteria also

suggests that modifiability and flexibility are the two testability factors that are

32

significant for testability measurement and it encapsulates the majority quality

criteria.

2.9 RELEVANT FINDINGS

The contextual findings of related work on software testability and the approaches

available for its measurement may be summarized as follows:

 Testability is not an explicit focus in today’s industrial software development

projects. Hence, processes, guidelines and tools related to testability

measurement are missing.

 Testability is primarily a design issues and it needs to be addressed at the

design level. Early estimation of testability may help to improve design, and

may finally produce quality software.

 In order to get reliable and correct measures of testability, it is advisable to

identify the factors affecting testability. Though, getting a universally accepted

set of testability factor is impossible, effort have been made to identify the key

factors of testability for the same.

 Many approaches to measure software testability were proposed by the

practitioners, but the empirical evaluation of these approaches is still missing.

 Testability can be estimated using the design artifacts and testability factors

will also be finalized keeping in view their impact on the overall testability.

However, a more systematic understanding of testability measurement is yet to

be evolved.

33

2.10 SUMMARY

After a revision tour it comes into view that several approaches have been proposed

in the available literature for measuring object oriented software testability. However,

it is evident from the relevant literature that only khan et al. (2009) has validated the

proposed model (MTMOOD), but this model measures software testability without

including testability factors. A survey of the relevant literature also shows that

maximum efforts have been put at the later stage of software development life cycle.

However, the lack of testability at design phase may not be compensated during

subsequent development life cycle. Researchers, practitioners and quality controllers

emphasize on the need of having a systematic approach for testability measurement.

They argue that testability can be measured at design phase by assessing the design

level factors of testability. Hence, there is a potential to develop a systematic solution

for testability measurement at design phase of development life cycle. Therefore, a

comprehensive framework and related model to measure testability of object oriented

software with the help of testability factors at design phase seems highly desirable

and significant.

In the next chapter, we will discuss about Testability Measurement Framework.

