
ENHANCEMENT OF ONLINE TOLL TAX

DATABASE MANAGEMENT MODEL USING

PUSH DOWN AUTOMATA APPROACH

A Thesis Submitted

In Partial Fulfillment of Requirements

for the Degree of

MASTER OF TECHNOLOGY

in

SOFTWARE ENGINEERING

by

RAVI PRATAP SINGH

(1140449011)

Under the Supervision of

Dr. V. K. Singh

Professor, Dept. of IT, BBDNITM

to the

SCHOOL OF ENGINEERING

BABU BANARASI DAS UNIVERSITY

LUCKNOW

May, 2016

ii

CERTIFICATE

It is certified that the work contained in the thesis entitled “Enhancement of Online Toll

Tax Database Management Model using Push Down Automata approach”, that is being

submitted by Mr. Ravi Pratap Singh (Roll No. 1140449011), in partial fulfillment for the

award of Master of Technology in Computer Science (Specialization: Software Engineering)

from Babu Banarasi Das University has been carried out under my supervision and that this work

has not been submitted elsewhere for a degree.

Name: Dr. V. K. Singh

Professor

Department of IT,

BBDNITM, Lucknow.

UP, India.

Date:

iii

ABSTRACT

We highlights the use of Push-Down Automata in maintaining the vehicle records and

provide the clustered view of them to make comparative analysis easier and faster. We focus to

provide a communicative framework that can record the vehicles coming from a particular state.

The Object Constraint Language (OCL) is being applied on Object Oriented Language so that

the communication framework can be represented into Object Oriented Language.

Tolling as a method of financing the transportation system is becoming more common

day by day. Neither the traveling public nor State Departments of Transportation wants the

vehicles to slow down or stopped to pay to use a toll facility. In this project we highlight the use

of Push-Down Automata (PDA) in sorting and maintaining the vehicle records coming for which

state, calculate the total revenue generated and showing this information into cluster view of

vehicle logs. Our objective is to develop a more interactive and communicative framework that

can maintain a record of the vehicles coming from a particular state. Since Object Constraint

Language is being applied on object-oriented language we will be representing the entire

communication work into the Object-Oriented Language.

In order to achieve this goal we have to identify these basic steps, the first step deals with

the development of a ubiquitous computing environment as the vehicle coming from. Secondly,

development of push down automata model for vehicle logs database management system. The

proposed work of this research work is to highlight the use of PDA in sorting and maintaining

record and focus is to provide a communicative framework that can record vehicles log. For this,

we will be developing a ubiquitous computing environment and development of PDA model for

database management system to verify the model and do the performance analysis.

iv

ACKNOWLEDGMENT

I would like to express my thanks and gratitude to Dr. V. K. Singh, Information

Technology Department, BBDNITM, Lucknow for offering much-appreciated advice, support

and thought-provoking ideas throughout in carrying out the project. It is solely his motivation

that has driven me in efforts. I would like to express my sincere thanks to all our colleagues

whose periodic inputs and informal discussions have given me a better perspective of my

progress.

Student Name: Ravi Pratap Singh

University Roll No: 1140449011

v

TABLE OF CONTENTS

 Page No.

Certificate ii

Abstract iii

Acknowledgement iv

List of Tables ix

List of Figures x

List of Symbols and Abbreviations xii

CHAPTER 1: INTRODUCTION 1-3

 1.1 INTRODUCTION 1

 1.2 MOTIVATION 1

 1.3 FOCUS 2

 1.4 THESIS ORGANIZATION 3

CHAPTER 2: PRESENT SCENARIO OF OTTMS 4-16

 2.1 TOLLING PRACTICES 4

 2.1.1 Objectives of Tolling 4

 2.1.2 Evolution of Tolling 4

 2.2 CLASSIFICATION OF TOLLING PRACTICES 6

 2.2.1 Manual Tolling 6

 2.2.2 Electronic Toll Collection 7

 2.2.2.1 Components of ETC 8

 2.2.2.2 Enhancements 8

 2.2.2.3 Benefits and Cost of ETC 9

 2.3 UPCOMING TOLLING TECHNOLOGIES 11

 2.3.1 Odometer Tolling 12

vi

 2.3.2 Cell Phone Tolling 14

 2.3.3 Satellite Tolling 14

CHAPTER 3: OBJECTIVE OF RESEARCH WORK 17-19

 3.1 PROBLEM STATEMENT 17

 3.2 CONSTRAINT 17

 3.3 OBJECTIVE 18

CHAPTER 4: LITERATURE REVIEW 20-33

 4.1 RESEARCH AND BACKGROUND 20

 4.2 COMPARSION CHART 22

 4.3 STUDY OF COMPARSION CHART 23

CHAPTER 5: METHODOLOGY USED 34-48

 5.1 TWO-STACK PUSH DOWN AUTOMATA 34

 5.1.1 Problem in normal PDA and Variations 36

 5.1.2 Need of Two-Stack PDA 37

 5.1.3 Components of Two-Stack PDA 37

 5.2 REAL TIME CONSTRAINT NOTATION 40

 5.2.1 Introduction of RTCN 40

 5.2.2 Object Oriented Real Time Modeling 42

 5.2.3 Characteristics 43

 5.3 OBJECT CONSTRAINT LANGUAGE 45

 5.3.1 Introduction of OCL 45

 5.3.2 UML and OCL 46

 5.3.3 Characteristics 47

CHAPTER 6: PROPOSED WORK 49-56

 6.1 FLOW CHART OF PROPOSED PDA MODEL 49

vii

 6.2 ALGORITHM 51

 6.3 STEPS INVOLVED 52

 6.4 PDA TRANSITIONS FOR VEHICLE RECORD UPDATE 53

 6.5 ID FOR VEHICLE RECORD UPDATE 55

 6.6 PDA TRANITIONS TO GENERATE CLUSTER VIEW 55

CHAPTER 7: BENEFITS OF PROPOSED MODEL 57-58

CHAPTER 8: IMPLEMENTATION WORK 59-86

 8.1 DATABASE 59

 8.1.1 Tables 60

 8.1.1.1 Main Table 60

 8.1.1.2 Dummy Table 61

 8.1.2 Trigger 62

 8.1.2.1 Definition 62

 8.1.2.2 Types of Trigger 62

 8.1.2.3 Advantages of Trigger 64

 8.1.2.4 Creation of Trigger 65

 8.2 JAVA APIs 67

 8.2.1 JAVA Introduction 67

 8.2.2 Stack 68

 8.2.3 JDBC 68

 8.2.4 Swing 72

 8.2.5 JFrame 72

 8.2.6 Util 73

 8.2.7 Events and Event Handling 74

 8.2.8 Graph (JFreeChart Library) 77

viii

 8.3 IMPLEMENTATION RESULT 80

 8.3.1 Number of Passed Vehicles 81

 8.3.1.1 Show Graph of Type-1 Vehicles 81

 8.3.1.2 Show Graph of Type-2 Vehicles 81

 8.3.2 Revenue Generated 82

 8.3.2.1 Revenue Earned by Type-1 Vehicles 82

 8.3.2.2 Revenue Earned by Type-2 Vehicles 82

 8.3.3 Total 83

 8.3.3.1 Total Number of Passed Vehicles 83

 8.3.3.2 Total Revenue Generated 83

 8.3.4 Stack 84

 8.3.4.1 Pop Type-1 Stack 84

 8.3.4.1 Pop Type-2 Stack 84

 8.3.5 About 85

 8.4 INTEGRATED DEVELOPMENT ENVIRONMENT 85

CHAPTER 9: CONCLUSION AND FUTURE SCOPE 87

REFERENCES 88-90

PLAGIARISM REPORT

LIST OF PUBLICATION

CURRICULUM VITAE

ix

LIST OF TABLES

 Page No.

Table 2.1 Stages of Tolling 5

Table 2.1 Toll Tag System in U.S. and Interoperability 9

Table 4.1 Comparison Study Chart 22

Table 8.1 Event Classes and their Listener Interface 74

x

LIST OF FIGURES

 Page No.

Figure 2.1 On-board mileage-counting equipment in the Oregon Pilot Project 13

Figure 2.2 The Galileo Satellite System for Global Positioning 15

Figure 3.1 Clustered View of Proposed Model 16

Figure 5.1 General Push Down Automata Model 35

Figure 5.2 Two-Stack Push Down Automata Model 38

Figure 5.3 Use of Stack in Two-Stack PDA 40

Figure 6.1 Flow Chart for working of Two-Stack PDA Model 50

Figure 6.2 Incoming vehicles record updation process 53

Figure 7.1 Output Clustered View of Proposed Model 57

Figure 8.1 Screenshot of MainTable 61

Figure 8.2 Screenshot of Dummy Table 61

Figure 8.3 Screenshot of created Trigger 66

Figure 8.4 Two-tier Architecture for Data Access 70

Figure 8.5 Three-tier Architecture for Data Access 70

Figure 8.6 Screenshot of Main Window 80

Figure 8.7 Screenshot of Type-1 Vehicles passed 81

Figure 8.8 Screenshot of Type-2 Vehicles passed 81

Figure 8.9 Screenshot of Revenue Generated by Type-1 Vehicles 82

Figure 8.10 Screenshot of Revenue Generated by Type-2 Vehicles 82

Figure 8.11 Screenshot of Total number of passed vehicles state wise 83

Figure 8.12 Screenshot of Total revenue generated state wise 83

Figure 8.13 Screenshot of Stack-1 Data items 84

Figure 8.14 Screenshot of Stack-2 Data items 84

xi

Figure 8.15 Screenshot of Help menu items 85

Figure 8.16 Screenshot of NetBeans IDE 86

xii

LIST OF SYMBOLS AND ABBREVIATIONS

ANPR Automatic Number Plate Recognition

AVC Automatic Vehicle Classification

AVI Automatic Vehicle Identification

CFG Context Free Grammar

CFL Context Free Language

DSRC Dedicated Short Range Communication

ETC Electronic Toll Collection

GNSS Global Navigation Satellite System

GSM Global System for Mobile communication

ID Instantaneous Description

IDE Integrated Development Environment

OCL Object Constraint language

OMG Object Management Group

ORT Open Road Tolling

OTTDBMS Online Toll Tax Data Base Management System

OTTMS Online Toll Tax Management System

PDA Push Down Automata

RFID Radio Frequency Identification

RTCN Real Time Constraint Notation

TSPS Toll Snapping and Processing System

UML Unified Modeling Language

1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Tolling as a method of financing the transportation system is becoming more common in

the country. Neither the traveling public nor State Departments of Transportation want vehicle to

stop or slow down to pay to use a toll facility. In this project we highlight the use of Push-Down

Automata (PDA) in sorting and maintaining the vehicle records coming for which state, calculate

the total revenue generated and show this information into cluster view of vehicle logs.

1.2 MOTIVATION

In the last two decades, Online Toll Tax Management System has been improved a lot.

However, there still remain some problems which have not been answered satisfactorily.

Currently, the toll rates are typically brought down to 40% of the ongoing toll rate after the end

of a concession period. The Minister for Road Transport and Highways Mr. Nitin Gadkari’s

promise of limiting toll collection to recover project cost is facing resistance on grounds that it

will add to the fiscal burden of the government. Officials in the road ministry and National

Highways Authority of India (NHAI) have pitched to make a presentation to the minister to

explain why the proposal is not feasible. [27]

Usually these are good stretches and cost of maintenance is high and there aren’t enough

funds with the government to ensure maintenance of these stretches without the toll money.

Currently, the toll rates are typically brought down to 40% of the ongoing toll rate after the end

of a concession period. Concession period is the duration for which a developer is given the

contract for tolling a road project for recovering the cost of construction and maintaining it, and

typically ranges between 20 and 30 years. The tolling policy is very vague. It needs to be

revisited for many reasons like defining what constitutes the cost of construction and why some

stretches are tolled and some not.

However, the toll that is collected after the concession period is used for maintaining and

cross-subsiding other national highway stretches that cannot be tolled. If this is removed where

2

will the money for maintaining the national highway network come from? Addressing a

conference on 100 days of the National Democratic Alliance (NDA) government on 15

September, the Ministry of Road Transport and Highways, a branch of the Government of India,

reiterated his keenness to go ahead with the proposal. The remarks come in the backdrop of

several instances of protests against toll collection. [27]

Road ministry officials are exploring alternative, acceptable solutions for resource

mobilization that could at least address the resentment of the local residents. One of the

suggestions is to toll only the commercial traffic after the cost of the project is recovered as

anyway 80% of the toll collection comes from the commercial traffic. The National Highways

Fee (Determination of Rates and Collection) Rules formulated in 2008 are in force currently. The

tolling strategy needs to be relooked at, keeping in mind the issue of the local users. More

importantly the issue of collecting toll until perpetuity for stretches without providing an

alternative free route to users who may not wish to pay also needs to be addressed. In this work,

we have identified such problems and tried to provide an effective solution to one of that

problem.

1.3 FOCUS

We focus to provide a communicative framework that can record the vehicle coming

from a particular state. In order to achieve this goal we have identified three basic steps, the first

step deals with the development of Ubiquitous computing environment as the vehicle coming

from. Secondly, development of push down automata model for vehicle logs database

management system. Since Object Constraint Language (OCL) is being applied on Object

Oriented Language we will be representing the entire communication framework into Object

Oriented Language. In the research work we are mainly focused on the following two points:

 Highlight the use of PDA in sorting and maintaining record.

 Focus is to provide a communicative framework that can record vehicles log.

For this, there will be three basic steps:

 Development of Ubiquitous computing environment.

 Development of PDA model for database management system.

 To verify the model and do the performance analysis.

https://en.wikipedia.org/wiki/Government_of_India

3

1.4 THESIS ORGANIZATION

This will describe how this documentation organization done. Thus the rest of the thesis

is organized in the following chapters as follows:

Chapter 1: This chapter introduces the research topic, motivation, what is tolling system,

the online toll tax management system, what I am going to state in this research work and

the organization of the chapters.

Chapter 2: In this chapter the present scenario of online toll tax management system is

described. This chapter includes the various tolling practices, their objectives and

evolution of tolling. A glimpse of upcoming tolling technologies included here.

Chapter 3: In this chapter we describes the Scope of the work, it consists of the problem

statement of the system and constraints generated in the system. Here the rectified

objective of this research work is illustrated related to the problem statement and

constraints.

Chapter 4: In this chapter a wide range literature review of the key concepts and

outstanding works in the area of the toll tax, push down automata, online toll tax database

management system and study of those concepts are mentioned. A comparison chart of

those techniques with their pros and cons is also mentioned in this chapter.

Chapter 5: In this chapter we describe the applied approach of the proposed system i.e.

methodologies used. It basically describes all the detailed methodology of the system,

their features, components, characteristics and process used in the applied system.

Chapter 6: In this chapter the proposed work i.e. the proposed PDA model, algorithm

and the flow chart is described. The steps involved for PDA transitions of vehicle record

updating process and to generate cluster view of it is described.

Chapter 7: This chapter describes the performance measure of the system based on the

different parameters and the benefits of proposed model.

Chapter 8: In this chapter we describe the implementation parts i.e. the whole system

works as a unit and the implementation results with the screenshots of the designed

system are given.

Chapter 9: This chapter summarizes the thesis work and draws the conclusions. Some of

the new directions for further work are alleged in the final chapter.

4

CHAPTER 2

PRESENT SCENARIO OF OTTMS

2.1 TOLLING PRACTICES

In this section the motivations for tolling, expected evolution of tolling systems, and the

benefits and costs of tolling are reviewed.

2.1.1 Objectives of Tolling

There are three main reasons why tolling, or road pricing, is implemented:

Finance/Revenue Generation: To recoup the costs of building, operating and

maintaining the facility. Road pricing is becoming a more appealing means of funding

transportation, since revenues from federal and state gas taxes have not kept up with growth in

demand for infrastructure. Moreover, toll financing allows projects to be built sooner instead of

waiting for tax revenues to accumulate.

Demand Management: To moderate the growth in demand on the transportation system

and to encourage more use of public transportation and carpooling. For example, vehicles are

charged to enter inner London, England, as a way of regulating the demand in the region.

Congestion Management: To place a price on limited roadway space in proportion to

demand. In this application the toll increases with the level of congestion. In the absence of such

pricing, drivers do not appreciate the costs they impose on others as a result of the congestion

they cause.

2.1.2 Evolution of Tolling

Roadway tolling is expected to become more pervasive over time. Four stages are

envisioned as shown in Table 2.1, beginning with corridor tolling and cordon tolling, then area

wide or vehicle-miles-traveled (VMT) tolling, and ultimately an integrated system management

strategy. Each stage improves system efficiency over the previous one, but also has higher

complexity. Each stage also requires certain conditions before implementation. Only the first two

strategies, corridor tolling and cordon tolling, have been widely implemented, with ETC

5

being a necessity to move to the next two stages. The third stage is now being pilot tested in a

few areas, while the final stage, an integrated system and lies in the future.

Table 2.1 Stages of Tolling [26]

Tolling strategy

over time

Objectives Complexity/Efficiency Required conditions

Corridor Tolling Repayment for

facility

Low Road must be exclusive to

those who pay

Cordon Tolling Demand

management

Medium Public trust that benefits

will outweigh costs

Area-mileage

Tolling

Revenue generation High Uniformity/interoperability

Integrated system

management

Demand/congestion

management

Very high Flexibility across modes:

access to information

 Corridor Tolling: This is the most common form of tolling, in which a driver pays a fee

to use a specific stretch of roadway or bridge. High Occupancy Toll (HOT) lanes, lanes

designated for multi-passengers but which single-occupant vehicles can use if they pay a toll, are

also included on this category. The primary objective of the toll is to repay the cost of building

and operating the facility. Complexity can be as low as having the driver stop and pay cash on

entry, although most systems are implementing ORT.

Cordon Tolling: This is a charge for entering a specific area. The primary objective is to

reduce the number of vehicles entering. Every entry point must be equipped with means of

identifying vehicles and ensuring that they pay, have paid, or will pay. To be an effective

strategy, the public must be convinced that benefits (improved mobility, lower pollution, etc.)

will be realized fairly quickly. An efficient public transportation system is essential for this

strategy to be effective.

Area-wide Mileage Tolling: This is a mechanism whereby vehicles are charged based

on VMT - a road user fee. An example of this system is the German truck toll, in which all trucks

are required to pay tolls based on the distance traveled inside Germany. In some respects this

strategy is analogous to the U.S. gas tax, in that, theoretically, each vehicle pays based on miles

6

driven. The primary objective is to generate revenue for the transportation system and, to a lesser

degree, to regulate the amount of driving. The complexity of distance-based tolling is relatively

high and requires uniform application area-wide, as well as interoperability across borders.

Integrated System Management: In this visionary concept, demand for transportation

would be managed through information: users would have a choice of modes and routes and an

array of ways to pay for a trip. The charge would incentivize the most efficient transport choice

and the market would drive the provision of capacity. Highly complex systems, such as roadside

vehicle-traveler communications would be required, but system usage is expected to be highly

efficient. Required conditions include market flexibility and access to information.

2.2 CLASSIFICATION OF TOLLING PRACTICES

Tolling as a method of financing the transportation system is becoming more common

day by day. Neither the traveling public nor State Departments of Transportation want vehicles

to stop or slow down to pay to use a toll facility. Most commonly used Tolling Practices:

 Manual Tolling

 Electronic Toll Collection(ETC)

2.2.1 Manual Tolling

The most traditional approach for collecting charging or toll collection is the manual one.

The manual toll is the conventional toll collection system which is made by an operator in the

cabin that carries out the payment of the fee for each vehicle, using multiple methods of

payment: cash (coins or banknotes), credit cards (magnetic bands or chip standard EMV),

discount cards, etc. Currently, manual collection is usually combined with other technologies,

forming the well-known mixed lanes. However, there are countries that continue to operate only

with manual systems.

The most significant components of a MTC system are:

 Toll Plaza / Booths

 Road Side Equipment (RSE)

 Toll Collectors & Staff

7

 Cash Handling System

 Back Office System

According to the manual toll collection methodology, a driver has to stop at a charging

booth and pay the required fee directly to a collector. The amount to be paid by each vehicle is

determined by its characteristics or classification.

2.2.2 Electronic Toll Collection

Electronic Toll Collection (ETC) is a system that automatically identifies a vehicle

equipped with a valid encoded data tag or transponder as it moves through a toll lane or

checkpoint. ETC aims to eliminate the delay on toll roads by collecting tolls electronically. ETC

determines whether the cars passing are enrolled in the program, alerts enforcers for those that

are not and electronically debits the accounts of registered car owners without requiring them to

stop. In 1959, Nobel Economics Prize winner William Vickrey was the first to propose a system

of electronic tolling for the Washington Metropolitan Area. [8]

The ETC system then posts a debit or charge to a patron's account, without the patron

having to stop to pay the toll. ETC increases the lane throughput because vehicles need not stop

to pay the toll. The motorized society which developed in tandem with the establishment of toll

roads has dynamically expanded our range of activities while enriching and coloring our daily

lives. However, traffic jams caused by the concentration of cars on convenient toll roads are

increasing year by year. Traffic jams are caused by saturated roads, which mean that jams can be

resolved by increasing the flow of traffic. Up until now, there have been active efforts to widen

roads in order to alleviate traffic jams but these initiatives soon reached their limit, bringing

about the need for a fundamental system reform of toll roads. This marked the beginning of the

ETC project.

Implementation and Operation Challenges:

 Insufficient knowledge of ETC technology by consumers who fear their movements will

be ‘tracked’.

 Political disinclination, also mainly because of ignorance about ETC technology, as well

as a desire to avoid antagonizing voters who have a misguided notion of ETC.

 Interoperability issues between different systems which raise costs.

8

 Reconstruction of highways to include ORT lanes builds gantries or dismantles existing

manual toll collection booths.

 Non-paying users—because of minor shortcomings of ETC technology, some users may

slip through the system without paying.

2.2.2.1 Components of ETC

 Electronic toll collection systems rely on four major components: [11]

a) Automated Vehicle Identification: Automated vehicle identification (AVI) is the process

of determining the identity of a vehicle subject to tolls. The majority of toll facilities

record the passage of vehicles through a limited number of toll gates. At such facilities,

the task is then to identify the vehicle in the gate area.

b) Automated Vehicle Classification: Automated vehicle classification is closely related to

automated vehicle identification (AVI). Most toll facilities charge different rates for

different types of vehicles, making it necessary to distinguish the vehicles passing

through the toll facility. The simplest method is to store the vehicle class in the customer

record, and use the AVI data to look up the vehicle class.

c) Transaction Processing: Transaction processing deals with maintaining customer

accounts, posting toll transactions and customer payments to the accounts, and handling

customer inquiries. The transaction processing component of some systems is referred to

as a “customer service center”.

d) Violation Enforcement: A violation enforcement system (VES) is useful in reducing

unpaid tolls, as an unmanned toll gate otherwise represents a tempting target for toll

evasion. Several methods can be used to deter toll violators. Police patrols at toll gates

can be highly effective.

2.2.2.2 Enhancements

 Interoperability

A major concern regarding electronic tags is the degree to which they are interoperable

with tags from other regions. If there is to be an area-wide tolling program, a single tag must

work in all jurisdictions. This is not the case with most systems. Table 2.2 shows tag operations

in the U.S. currently and those that provide interoperability.

9

Table 2.2 Toll Tag Systems in the U.S. and Interoperability [26]

Tag System Jurisdiction Interoperable with

C-Pass Key Biscayne,
Florida

Cruise Card Atlanta, Georgia

E-PASS Orlando, Florida SunPass

EXpressToll Colorado

E-ZPass U.S. Northeast

Fast Lane Massachusetts E-ZPass

Fastrak California

I-Pass Illinois E-ZPass

K-Tag Kansas

LeeWay Lee Country, Florida SunPass

MnPass MinneSota

O-PASS Osceola County,
Florida

SunPass

PalmettoPass South Carolina

Pikepass Oklahoma

Smart Tag Virginia E-ZPass

SunPass Florida SunPass

TollTag Texas TxTAG

EZ TAG Texas TxTAG

TxTAG Texas EZTAG, TollTag

The idea is that the customers would have information stored in the database. The traffic

would then share that data with toll authorities across the customers that will be able to drive

through any ETC lane without the use of a transponder. Instead of registering them as violators,

the electronic toll system would scan the customer’s information, look up the customer on the

database and charge the owner’s credit card.

Rental Tags

The rental car industry is considering renting out toll tags to its customers. They have

found that rental car customers do not object in principle to paying tolls, but do object to having

10

to wait in line to pay them because the car does not have a tag. Budget Rent a Car gives the

option of renting a transponder for 99 cents a day, tolls not included.

2.2.2.3 Benefits and Cost of ETC

Benefits of ETC

Among the benefits of ETC are illustrated below:

 ETC lanes improve the speed and efficiency of traffic flow and save drivers time. Manual

toll collection lanes handle only about 350 vehicles per hour (vph) and automated coin

lanes handle about 500 vph. An ETC lane can process 1200 vph, with ORT lanes

allowing up to 1800 vehicles per hour (Tri-State Transportation Campaign, 2004).

 As a result of better flow, congestion is reduced, fuel economy is improved, and pollution

is reduced.

 Increased revenue: time savings, faster throughput, and better service attract more

customers, thus increasing revenue.

 Reduced accident rates/ improved safety because of less slow-and-go driving.

 Increased efficiency of roads because of better distribution between tolled and non-tolled

routes.

Two benefits of open-road tolling are especially noteworthy (Tri-State Transportation

Campaign, 2004):

 Safety benefits: Generally, ORT facilities are nearly accident-free. ORT allows vehicles

to travel at normal highways speeds, avoiding dangerous stop-go traffic and sudden

merges, and eliminating the danger of drivers jockeying for lane position. ORT can also

cut down on the distractions toll payers face while driving, such as fumbling for change

or having to slow down or stop to pay the toll.

 Economic Benefits: Delays cause losses to both the driver and the overall economy.

Drivers suffer direct costs of increased fuel consumption and vehicle wear and tear owing

to idling and stop-and-go movement, as well as indirect costs of stress. Valuable time is

spent in traffic instead of productive work. Delays also drive up the cost of shipping

goods - a cost usually passed on to the consumer. ORT reduces delays and thus provides

economic benefits.

11

Costs of ETC: There are several costs in implementing an ETC system. Among the major costs

are:

 Toll Agency Costs: According to a 2002 study by the California Center for Innovative

Transportation, the cost per transaction of an ETC system is between $0.05 to $0.10

(Smith, ITS Decision, 2002). A manual toll cost per transaction is $0.35 to $0.45. Not

only are the costs per transaction usually lower in an ETC system, the number of

transactions is far higher than in a manual system. Additionally, the number of people

required to operate an ETC system is far fewer than required for a manual toll collection

system. Overall costs per transaction, therefore, shrink significantly. Oklahoma Turnpike,

one of the first U.S. highways to use high-speed toll plazas, saw a 90 percent reduction in

collection costs on ETC lanes.

 Costs to the User: Most systems which have implemented ETC require motorists to buy

or rent the equipment. In addition to the cost of the system, the motorist is also required

to pay a security deposit, keep a minimum balance in his account, and, in some cases pay

a monthly fee for the ETC equipment. Some systems also require motorists to keep a

credit card balance.

 Initial Sunk Costs: The initial costs of implementing ETC or converting a manual toll

facility into an ETC can be quite high. There are also significant operational and

maintenance costs to an ETC system that are difficult to predict or to figure into present

worth calculations.

2.3 UPCOMING TOLLING TECHNOLOGIES

There are also some ETC technologies that are currently being considered as possible

alternatives to transponders and video tolling and that may find applications in area-wide

mileage tolling programs and in integrated system management, including:

a. Odometer Tolling

b. Vehicle Positioning Systems

I. Cell Phone Tolling

II. Satellite Tolling

12

2.3.1 Odometer Tolling

The Oregon Department of Transportation (ODOT) is conducting a pilot project on

odometer tolling (Oregon Department of Transportation, 2005). In 2001, the Oregon State

Legislature created the Road User Fee Task Force (RUFTF) to look at means to raise revenue as

a replacement for Oregon’s gas tax. RUFTF looked at twenty-eight different options and focused

on a distance-based charge on the number of miles traveled in Oregon. The Road User Fee Pilot

Program was created to examine the technical and administrative feasibility of implementing a

per-mile fee. The program uses on-board mileage-counting equipment to keep track of the

number of miles traveled. Based on the results of the pilot test, ODOT will draft legislation to be

put before the state legislature in 2009.

During the fall of 2005, a pre-pilot program of twenty volunteers started the program to

work out any unexpected issues that could occur. Volunteers’ cars were equipped with on-board

mileage counting equipment (Figure 2.1). In spring 2006, 280 volunteers in Portland had the

equipment added to their vehicles. For a period of one year, volunteers will pay a fee equal to 1.2

cents a mile and will not pay the gas tax. There will be two service stations in the Portland area

equipped with mileage reader devices and pilot participants will be asked to fill their vehicles at

these participating service stations when convenient. When refueling, the on-board mileage

counter will communicate with the mileage readers placed at the pumps. When the purchase is

totaled, the gas tax will be deducted automatically and the road user fee will be added

automatically.

A federal requirement of the Pilot Program is to test the ability to count separately the

miles traveled during rush hour within a congested area. Some of the pilot volunteers will be in a

rush hour pricing group to test this concept. Because the pilot is a test, many policy options

remain for decision-makers, such as charging a lower rate-per-mile for vehicles that achieve a

certain fuel efficiency, for motorists that avoid rush hour zones, or for those participating in other

environmentally-friendly activities. The road user fee program does not track, store or collect

private information. There is a switching device that counts the number of miles the vehicle has

traveled. The device cannot record the location of the vehicle except when the vehicle passes

through certain designated rush-hour zones. The device counts only the number of miles traveled

within the zone, not the time of day, location in the zone, or even the day.

13

Figure 2.1 On-board mileage-counting equipment in the Oregon Pilot Project [26]

There is also a GPS receiver in the cars that simply tells the electronic odometer whether

to count the miles as in state or out of state. This is to prevent Oregonians from being charged for

miles driven outside the state. No location data is transmitted anywhere or stored in the device or

elsewhere; since vehicle location data is not collected, it cannot be accessed. The only data

collected and transmitted is the mileage, which is sent to the gas pump reader through a radio

frequency that can only travel about 8 to 10 feet. As the driver fuels up, the VMT is calculated

and the gas tax is deducted.

The Oregon Road User Fee concept recommends that only new vehicles be equipped

with the on-board technology. All of the technologies being used in the pilot program are already

being manufactured in cars today. Some automobile manufacturers have already announced that

key components will be standard equipment on all models within the next few years. The Federal

Highway Administration (FHWA) and transportation standards organizations are working to

adopt universal standards for the same technologies being used in the pilot program. In the near

future, therefore, it is very likely that a state adopting a GPS-based mileage fee would not need

to require additional hardware to be installed in vehicles. Some sort of software upgrade seems

more likely.

With the Road User Fee Pilot Program, Oregon is not looking to raise revenue but to look

at options for the inevitable future road revenue decline. The ODOT is obliged to test congestion

pricing in the pilot program (as a requirement of ODOT’s FHWA Value Pricing Pilot Program

grant). It is not an indication of a specific policy directive adopted by the Oregon DOT or the

state legislature. Any future policy decision Oregon may make on the mileage fee does not

14

necessarily translate into application of congestion pricing, as these two policy decisions are

separate. The pilot program will simply test whether or not an electronically collected mileage

fee could technologically include congestion pricing, should policymakers ever decide to go in

that direction.

2.3.2 Cell Phone Tolling

Cell phone tolling is a concept that this has potential for mileage-tolling. Essentially, a

chip similar to a cell phone chip would be installed in a vehicle, and frequent communication

between cellular towers and the chip would determine how far the car has moved and would

assess a toll. Given the near total coverage of cell phone signals in urban (and congested) areas

of the U.S. and the deployment of GPS capabilities in cell phones for 911 phone locating, this

technology appears to be technically feasible. It is likely to be less expensive than satellite-based

systems because the infrastructure needed (cell phone towers) already exists. In addition,

installing a cell phone chip in a car will likely be less expensive than installing a GPS unit

capable of picking up satellite signals.

The proof of viability of the concept is in a recent marketing campaign by

telecommunications firm Sprint to help parents keep track of their children. The service lets

parents look at maps on their cell phones to locate their children, who also carry cell phones.

Sprint's service shows data such as street addresses to which a child is in close proximity and the

estimated accuracy of the reading, which could range from a radius of 2 yards around the child to

hundreds of yards.

2.3.3 Satellite Tolling

Satellite tolling uses a satellite-based vehicle-tracking system to determine exact vehicle

location while using mobile communication technology to compute toll charges. Each vehicle

has an onboard unit which records the vehicle’s movements by periodically downloading

satellite time stamped location coordinates. Satellite tolling is considered the most promising

technology for ETC because it allows for accurate, distance-based tolling. It is also flexible,

allowing for time and location-variable tolls. Satellite tolling is touted to become the preferred

method of ETC, especially in Europe.

15

Satellite technology is improving rapidly. With the launch of the European Galileo

system (beginning in 2008), the technology will improve further. Galileo is the next generation

of satellites and will overcome most of the shortcomings of the current GPS system, being more

accurate and reliable. It will also be interoperable with existing systems, allowing for greater

access and backup ability. The project is being managed by the European Commission and

European Space Agency.

The Galileo system will work as shown in Figure 2.2 (BBC: Europe’s Galileo Project):

Figure 2.2 The Galileo Satellite System for Global Positioning [26]

 Satellite navigation systems determine a position by measuring the distances to at least

three known locations the Galileo satellites.

 The distance to one satellite defines a sphere of possible solutions; the distance to three

defines a single, common area.

 The accuracy of the distance measurements determines how small the common area is

and thus the accuracy of the final location.

 In practice, a receiver captures atomic-clock time signals sent from the satellites and

converts them into the respective distances.

 Time measurement is improved by including the signal from a fourth satellite. Galileo

time is monitored from the ground.

16

Advantages of Satellite Tolling:

 Faster, hassle free and less paperwork: A GPS system will involve less paperwork and

lower transaction costs than other forms of tolling. All a driver has to do is drive through

a toll station and his driving distance and toll information can be uploaded into the

system automatically through wireless connection. If the driver has a prepaid account, the

toll charge can be deducted automatically.

 Ancillary services could be provided through transponders and GPS: A GPS system will

not only allow collection of tolls, but other information and services can be passed along

to the driver as well. For example, the driver will be able to receive real time weather and

traffic information. In case of an emergency, his position and situation can be accurately

monitored.

 Negates the necessity of investing in expensive roadside infrastructure: Once the

infrastructure is in place, there are few costs involved in the operation of a GPS-based

tolling system.

Disadvantages of Satellite Tolling:

 Phase-in period: At present, an OBU has to be installed for a vehicle to use GPS tolling.

It is expected that it will be another 10–15 years before OBUs become standard

equipment on cars. In the meantime, deployment is proceeding in the trucking industry

because of the desirability of tracking shipments.

 Interference in certain situations: At present, GPS is not entirely reliable because there

can be situations where satellite signals are lost (such as in urban canyons, or heavily

forested roads, and during lightning storms). The technology, however, is getting more

accurate and these problems are expected to be, for the large part, resolved with Galileo.

 Public reluctance of being tracked: GPS is, in fact, a passive system and cannot track

individuals themselves. Just because someone carries an active receiver does not mean

his every move can be followed.

 Start-up costs: Some of the start-up costs such as distribution of OBUs and installation of

payment booths may be expensive. The German Toll Collect system, for example, went

well over budget. Once installed, however, it is not as expensive to maintain as other

forms of toll collection methods.

17

CHAPTER 3

OBJECTIVE OF RESEARCH WORK

3.1 PROBLEM STATEMENT

This research work focuses on enhancement of the current toll tax database management

system to view vehicles coming from which territory in clustered form and show this into cluster

view of vehicle logs. This clustered view will help in comparative analysis. In this project we

develop an interactive and communicative framework by using the propose PDA model that can

maintain a record of the vehicles coming from various states. It focuses on the development of a

feature to view vehicles coming from which territory in cluster view. We can calculate the total

revenue generated territory wise and show that in graphical view as well.

Figure 3.1 Clustered View of proposed model

3.2 CONSTRAINT

While proposing this research work there are some constraints generated at the stage of

development which also creates an issues for the system designing which discussed below:

0

5

10

15

20

25

30

35

40

45

State Name

State wise vehicle log

No. of vehiles passed

18

 The user’s subjective intentions: Different user may have different perception of same

software, which refers to the subjectivity of user’s perceptions. The research of how to

reflect it in toll plaza data presentation is rather few.

 Communication Gap: Communication gap refers to the difference in the way a user

perceives toll plaza management system and the way a system perceives it on the basis of

its certain characteristics. A major constraint in toll plaza data management system is

information flow and data representation.

 Integration of various features: Multi features outperform the single feature in this

system. The proposed system user can view the number of incoming vehicles from one

direction and number of incoming vehicles from the opposite direction as well in the

clustered view separately. In the same way, the revenue generated by both types of

vehicles can be observed in classified manner state wise. Moreover, the user can view

state wise the total number of vehicles passed and revenue generated by those in

graphical manner for comparative analysis.

 Customization of the toll data and information interpretation: Customization of the toll

data and information interpretation is the big challenge to achieve because a high

dimensionality of the system is required to incorporate versatile technique. This

customization was also a big constraint in the matter of the Toll Tax Database

Management Model.

 Data confidentiality and security: The toll data which is used as an input to the system

must be designed appropriately and according to the desire of the system’s objective what

the user wants to be search, it must reflect the properties of the data confidentiality and

security.

3.3 OBJECTIVE

Our objective is to develop a more interactive and communicative framework that can

maintain a record of the vehicles coming from a particular state. In order to achieve this

objective the real time constraint notation being applied to the push-down automata for formal

verification of the model. Since Object Constraint Language is being applied on object-oriented

language we will be representing the entire communication framework into Object-Oriented

Language. The proposed work of this research work can be described as following points:

19

 We highlight the use of PDA in sorting and maintaining the records: We are proposing a

Two-Stack Push-Down Automata model for the Toll Plaza record maintenance. Our

model is very much capable of storing and maintaining the vehicle log records and as per

the requirement it will generate the state wise total number of vehicles passed and

revenue generated in the clustered view.

 Our focus is to provide a communicative framework that can record vehicles log: We are

going to develop an interactive and communicative framework that will allow the user to

interact with the Toll Plaza Management System in easier way as before.

For this, there will be 2 basic steps:

 Development of Ubiquitous computing environment.

 Development of PDA model for database management system.

20

CHAPTER 4

LITERATURE REVIEW

4.1 RESEARCH AND BACKGROUND

Online Toll Tax Database Management System for general-purpose databases is a highly

challenging problem because of the large size of the database, the difficulty of understanding and

the continuously increasing data. The difficulty of formulating a query and the issue of

evaluating results properly. A number of general-purpose Online Toll Tax Database

Management System has been developed. Toll Tax Management System is an application that

can provide all the information related to toll plazas and the passenger checks in either online

and pays the amount, then he/she will be provided by a receipt. With this receipt he/she can leave

the toll booth without waiting for any verification call.

The information would also cover registration of contractor, toll plaza collection, toll

plaza collection entry for individual sector , date wise report entry, toll tax rates for different type

of vehicle, Immediate Superior details and HOD details, cheque entry based on receipt date,

cheque, department and other details. Based on the user login, privileges are provided to access,

such as when the contractor login using his username, he can access only his details and not the

other contractors details. Besides the toll plaza data, the system will have information relating to

the Annual Confidential Report of contractors.

 In the present day scenario, power is a major need for human life. There is a need to

develop non- conventional sources for power generation due to the reason that our conventional

sources of power are getting scarcer by the day. The main aim is to run the toll system using

piezoelectric sensor. In turn we are saving the power needed for running the toll gate. Now a

days, there is a huge rush in the toll plazas in order to pay the toll tax. Therefore in order to

reduce the traffic jam and to save time and also to reduce the money loss of 300 cores / year.

Delay at tollbooths is nowadays quite common in almost all the major highways. This leads to

increases in congestion, inconvenience and fuel consumption. Automatic Toll Collection System

brings a new idea to eliminate the delay at tollbooths. Here a micro controller based automatic

system using infrared sensors is being utilized. IR sensors have been used as these are

21

economical, have perfect line of sight, hence less interference. Automatic toll collection system

aims to collect toll from the vehicles without making the vehicle stop at the tollbooth. Each user

is provided with a module that is to be mounted on the windshield of the vehicle which consists

of transmitter, receiver, microcontroller and a LCD unit. The toll booth is equipped with another

module for collecting toll from each user. The computer at the toll booth holds the database

consisting of details regarding each user along with a unique code. The Automatic Toll

Collection System include benefits to both toll authorities and facility users, in terms of time and

cost saving, improved security, increased capacity and greater convenience.

Moving to other aspect of this thesis work, pushdown automata are a widely used model

both in language theory and program verification. Recently, several models have been introduced

that extend pushdown automata with clocks and real-time constraints. In the mean time, several

works have extended the model of timed automata with prices (weights). Weighted timed

automata are used in the modeling of embedded systems, where the behavior of the system is

usually constrained by the availability of different types of resources.

There is a demand for reliable real-time systems. A typical real-time application consists

of several processes, each of which has to be completed within a given time frame. Up until

recently there has not been enough emphasis on the tools which can be used to produce real-time

software with performance and reliability guarantees. By introducing real time euclid, a language

designed specifically to address reliability and guaranteed schedulability issues in real-time

systems. Real time euclid employs exception handlers and import/export lists to provide

comprehensive error detection, isolation, and recovery. The philosophy of the language is that

every exception detectable by the hardware or the software must have an exception handler

clause associated with it. Moreover, the language definition forces every construct in the

language to be time and space bounded. Consequently, Real-Time Euclid programs can always

be analyzed for guaranteed schedulability of their processes. Thus, we feel that real time euclid is

well-suited for writing reliable real-time software.

22

4.2 COMPARISON CHART

Table 4.1 Comparison Study Chart

Year Paper Name Focus Technology Pros and Cons

2015 Toll Snapping
and Processing
System

Automation in toll tax

payment using Online

Registration form and

RFID is designed.

Proposed TSPS is design
of paying toll through
online transaction
System.

Combination of
microcontroller
and RFID
technology

Eliminates the manually
perform ticket payments and
toll fee collections.

Low cost, security, far
communication distance and
high efficiency etc.

Problem for out-station
vehicles.

Computer Vision
Based Vehicle
Detection for
Toll Collection
System Using
Embedded Linux

To design and develop a
new efficient toll
collection system which
will be a good low cost
alternative among all
other systems

Computer Vision
vehicle detection
using OpenCV
library. System is
designed using
Embedded Linux
development
kit(Raspberry pi)

There is hardly any effect of
skipping of frames on the
output.

Tests on algorithm suggest
that the threshold of
variance between
foreground and background
is crucial parameter to look
for.

2014 Automatic Toll
Gate System
Using Advanced
RFID and GSM
Technology

Automation in Toll Plaza
which will reduce the
complete processing
time.

RFID, GSM,

DSRC

Technology

Automatically detect and
identifies the vehicles
High implementation cost

The Charge
Collector System

Proposed a new system
to collect tolls on Open
Road Tolling (ORT)
infrastructures.

DSRC,

GSNN, NFC

Flexible payment options,
recording of incurred tolls
and make them available to
the end user and
management entities.

C2S is a work in progress
project. It is required to test
this solution in real
scenarios, across several
countries in different
systems.

23

Gateless
Electronic Toll
Collection using
RFID

An effective and efficient
utilization of
communication link
between RF Modems
over a wireless channel
to facilitate monitoring,
authentication and
automated toll collection
of vehicles.

RFID Tag,
RFID Reader,
Serial
Communication
Port,
VB .Net

The vehicles are
automatically identified by
the system which can be
used to track a vehicle and

classified as a 2-wheeler, 4-
wheeler or a heavy vehicle

The vehicles are tracked on
road in real time

2013 Image
Processing
Based Automatic
Toll Booth in
Indian
Conditions

Examine the image and

respective information to

make the toll plaza

system efficient.

ANPR

Technology

Reduce the human effort at

toll plaza and doesn’t
required any tag.

Camera is used for capturing

the image, which can be

easily affected.

Dynamic
approach
towards Toll Tax
Collection &
vehicle tracking
with the help of
RFID

Use of RFID technology
for ETC system. The
primary requirement is to
eliminate the need for
motorists and toll
authorities to manually
perform ticket payments
and toll fee collections,
respectively.

RFID
Technology,
Remote Database
Connection

The problem of traffic
congestion and human errors
in the system is effectively
rectified and provides
efficient toll collection
facility for the consumers.
The overall cost of
implementing the system is
high.

2012 Development of
a Model for
Electronic Toll-
Collection
System

Proposed a new method
for ETC system and to
match car number plate
detection system. Here a
system is developed to
collect tolls according to
the weight of the vehicle.

Microcontroller,
Image Processing,
MATLAB

Low complexity and
reduced the processing time,
ensures safety and better
traffic management.

4.3 STUDY OF COMPARISON CHART

 I go through various research papers for literature review and till now. I am taking some

paper as literature review for my research, those are:

24

 Toll Snapping and Processing System

In this paper automation in toll tax payment using Online Registration form and RFID is

designed. Automation of toll plaza is made using the combination of microcontroller, RFID. The

TSPS is design of paying toll through online transaction System, designed for real time toll

collection that uses tags that are mounted on the windshields of vehicles, through which

information embedded on the tags are read by RFID readers. The proposed system eliminates the

manually perform ticket payments and toll fee collections, respectively need for motorists and

toll authorities. In the present day scenario, in order to pay the toll tax we find huge rush in the

toll plazas. Therefore in order to reduce the traffic jam and to save time and also to reduce the

money loss of 300 cores / year. The proposed RFID system uses tags that are mounted on the

windshields of vehicles, through which information embedded on the tags are read by RFID

readers. The toll authorities and motorists can easily exchange data information, thereby enabling

a more efficient toll collection by reducing traffic and eliminating possible human errors.

Any structure, system or building needs maintenance and rehabilitation, which are of course

costly. Highways and roads are also not an exception. From the very past, the construction,

extension, maintenance and operating costs of highways, roads, bridges and tunnels were

collected directly or indirectly. In the old indirect method, the expenses are compensated either

by the tax payment for fuel or by budget allocation of the national income. The shortcoming of

this method is that a number of taxpayers, who do not use any of the roads and carriageways,

have to pay extra money. However, in the other system, called direct method, the tolls are taken

directly from the drivers passing that road or street. The advances in the technologies related to

wireless communication has led to the emergence of several engineering designs to aid the

human requirements. Today on one side the importance for secured access is growing in several

fields and on the other side with technology advancements the RFID cards and readers are

becoming low cost. Both these aspects are the primary reasons for rapidly growing RFID based

authentication system. Today, several Wireless technologies are used for building wireless

networks. Among them the 2.4GHz wireless network is most widely deployed and used. The

wide usage of 2.4 GHz wireless communication indicates that this infrastructure can give near

real time responses and makes suitable for crucial, industrial systems. It has been observed that a

25

lot of electrical energy is wasted at toll gates just to operate gates, computer systems and for

lighting. [3]

 Computer Vision Based Vehicle Detection for Toll Collection System Using

Embedded Linux

This paper presents a brief review of toll collection systems present in India, their advantages

and disadvantages and also aims to design a new efficient toll collection system which will be a

good low cost alternative among all other systems. The system is based on Computer Vision

vehicle detection using OpenCV library in embedded linux platform. The system is designed

using Embedded Linux development kit (Raspberry pi).

Many highway toll collection systems have already been developed and are widely used

in India. Some of these include Manual toll collection, RF tags, Barcodes, Number plate

recognition. All these systems have disadvantages that lead to some errors in the corresponding

system. In this system, a camera captures images of vehicles passing through toll booth thus a

vehicle is detected through camera. Depending on the area occupied by the vehicle, classification

of vehicles as light and heavy is done. Further this information is passed to the Raspberry pi

which is having web server set up on it. When raspberry pi comes to know the vehicle, then it

access the web server information and according to the type of the vehicle, appropriate toll is

charged. This system can also make to count moving vehicles from pre-recorded videos or stored

videos by using the same algorithm and procedure that is followed in this paper.

India is a country where we get to observe most extensive National highways.

Government plans various phases to complete the projects under construction. The government

signs agreement with the private companies who build the infrastructure like road, port and other

stuff for a particular span of time generally in years. The invested amount is charged from the

vehicles passing on that newly built highway. This charged amount is called as toll tax. People

have no choice to pay for toll tax for using the infrastructure. The private agency involved in the

manufacturing of the infrastructure is free to charge citizens. For some places, it is observed that

toll tax is still being collected even after completion of contract period. Initially there were toll

collection systems such as manual toll collection without generating computer receipts. This

method is really very inefficient. This method of payment was used to stop the vehicles at toll

station and wait for relatively long time for their turn to come. This was causing congestion of

26

traffic. The states of congestion and inefficiency prompted government to plan and implement

Electronic Toll Collection (ETC) system which can remove out these problems and facilitate

convenience for all who involved in the process of toll collection directly or indirectly.

ETC systems are designed and developed to cooperate in the operations of toll

management through the use of technology. These systems gather data on the basis of traffic and

then they will classify the vehicles and collect the expected amount of fare. Electronic/automated

toll collection systems are very popular these days. They do not require manual intervention for

their working. There are various methods of ETC in which toll is collected and also various toll

booths on which these toll collection systems are implanted. There are many toll collection

systems which are present for very long duration still they are collecting toll from people. There

is no transparency provided by these systems. Transparent systems play an important role in toll

collection such that there will be no corruption regarding toll. The proposed system in this paper

is transparent to appropriate toll collection. [2]

 Automatic Toll Gate System Using Advanced RFID and GSM Technology

The concept proposed is of automatic toll tax payment system and the amount transaction

information sends to the cell phone of the motorists through the GSM modem technology. It is

an innovative technology for expressway network automatic toll collection solution. In this

paper, the frame composing and working flow of the system is described and data information is

also easily exchanged between the motorists and toll authorities, thereby enabling a more

efficient toll collection by reducing traffic an eliminating possible human errors.

Most Electronic Toll Collection (ETC) systems around the world are implemented by

DSRC (Dedicated Short Range Communication) technology. Any structure, building or system

needs maintenance and rehabilitation, which are of course costly. Highways and roads are also

not an exception. From the very past, the construction, extension, maintenance and operating

costs of highways, roads, bridges and tunnels were collected directly or indirectly. In the old

indirect method, the expenses are compensated either by the tax payment for fuel or by budget

allocation of the national income. The shortcoming of this method is that a number of taxpayers,

who do not use any of the roads and carriageways, have to pay extra money. However, in the

other system, called direct method, the tolls are taken directly from the drivers passing that road

or street. The other three main reasons why tolling, or road pricing, is implemented are the

27

advances in the technologies related to wireless communication has led to the emergence of

several engineering designs to aid the human requirements. Global system for mobile

communication is that it is an international standard. If you travel in parts of the world, GSM is

the only type of cellular service available.

Implementing mobile communication based health monitoring via short message service

(SMS). Simple wireless control device to achieve the targets, or use the GSM network

technology to achieve. Nevertheless, the functions of these devices are too simple to prevent the

vehicle theft crimes from happening, furthermore, their burglarproof methods are not only

character. There are millions of drivers passing through Toll Gate Stations every day. The

conventional or the traditional way of collecting the toll from the vehicle owners or the drivers is

to stop the car by the Toll Gate Stations and then pay the amount to the toll collector, standing

(or perhaps sitting) by the side of the toll booth, after which the gate is opened either

mechanically or electronically for the driver to get through the toll station. So in order to stop all

these problems and inconvenience, this paper introduces an automated or a more convenient way

of collecting the toll and traffic management. It’s called Electronic Toll Gate Stations using

RFID Technology. [14]

 The Charge Collector System

This paper proposes a new system to collect tolls on Open Road Tolling (ORT)

infrastructures. The actual ETC systems do not fulfill fundamental user requirements, such as

interoperability and portability between systems and road operators (in the same or different

countries), as well as advanced toll logging and reporting (capabilities ensuring user privacy, an

interesting feature in car rental or sharing use cases).

The Charge Collector System (C2S) is a work in progress project that will provide some

features, such as flexible payment options, recording of incurred tolls and make them available to

the end user and management entities, exploring a synergy of technologies in ETC scenario,

namely Dedicated Short Range Communication (DSRC), Global Navigation Satellite System

(GNSS), Near Field Communication (NFC) and smart phone based mobile applications. This

system is also an approach to interoperable European ETC solutions, in a way that uses DSRC

and GNSS-based solutions together.

28

Since the 60’s, the Electronic Toll Collection (ETC) is used around the world and, on last

decade, it is becoming more and more pervasive. The benefits of ETC associated to free flow

systems are well known and the actual trends point to the creation of Open Road Tolling (ORT)

infrastructures i.e. roads where tolls are entirely electronic with little or no impact on traffic flow.

The two main technologies used on ORT are based on the Dedicated Short Range

Communication (DSRC) transponders and Global Navigation Satellite System (GNSS) with

Global System for Mobile Communications (GSM). Besides its advantages, the current ORT

systems do not address conveniently the following issues:

• The flexibility of the bank account that can be used for toll payment, i.e. currently, users

have always to pay by the same bank account, which can be an issue in some cases.

• The payment information/receipts or toll logs are not readily available to the user or

management entities. In some cases, such as rent-a-car or car sharing companies, there is

a need to know if costumers used tolls and payment has been done. In some systems, the

information or toll receipt takes 48 hours to be available.

• The lack of an On-Board Unit (OBU) user interface that could provide road information

and support for implementing Dynamic Road User Charging (DRUC) systems. On

current systems it is impossible to apply different prices on several users in real-time

because there is no user interface to say how much he/she has to pay.

• The problems related to interoperability between different systems. If a user travels

abroad, she/he cannot use ETC automatically without buying the local OBU.

• In case of GNSS-GSM based infrastructures, the toll companies have to use GSM so they

are dependent of mobile operators. [10]

 Gateless Electronic Toll Collection using RFID

An effective and efficient utilization of communication link between RF Modems over a

wireless channel to facilitate monitoring, authentication and automated toll collection of vehicles

on the highways is proposed in the paper. The system is implemented to automatically register

vehicles getting on or off a motorway or highway, shortening the amount of time for paying toll

in large queues.

This paper also introduces the implementation and design of an active RFID tag based

system for automatically identifying running vehicles on roads and collecting their data. The

29

architecture and the basic principles of design of the system are presented, including reading

equipment (readers and antennas) and active electronic tag. Finally, the effectiveness and

efficiency of the system is analyzed as a whole. Electronic toll collection (ETC) is a technology

enabling the electronic collection of toll payments. It has been applied over many highways and

expressways for faster toll collection and reduced traffic congestion. This ETC system is capable

of determining if the car is registered or not, and then informing the authorities of toll payment

violations, debits, and participating accounts. The most significant advantage of this technology

is that it eliminates congestion near toll booths. It is also a method by which vehicles at

tollbooths can be tracked. Other than this obvious advantage, implementation of the ETC could

also benefit the toll operators. The benefits or advantages for the users include:

1) Minimized queues at toll plazas by increasing toll booth service turn-around rates.

2) Faster and more efficient service.

3) The ability to make payments anytime anywhere on the card itself or by loading a

registered credit card.

4) The well timed notification to users via the push notification that informs them about

their current account status.

An ETC system extensively utilizes radio frequency identification (RFID) technology.

RFID is a generic term used to identify technologies utilizing radio waves to identify people or

objects. RFID technology was first introduced in 1948 when Harry Stockman wrote a paper

exploring RFID technology entitled, “Communication by Means of Reflected Power”. RFID

technology has evolved since then, and has been implemented in various fields, such as in,

library system warehouse management, theft prevention attendance system and so on. Generally,

RFID is used for, tracing, tracking, and identifying objects. The whole RFID system consists of a

transponder (tag), reader/writer, antenna, and computer host. The transponders/tags are a

microchip amalgamated with an antenna system in a compact Toolkit. The system contains a

microchip which contains memory and logic circuits to receive and send data back to the reader.

These tags are classified as either active or passive tags. The batteries in the Active tags provides

a longer read range, on the other hand the passive tags are powered by the signal of the reader

and hence have shorter read range.

 The reader contains two components a decoder along with the RF module and an antenna

to send and receive data from the tag. It can be mounted or built as a mobile portable device. The

30

desktop host acts as the interface for IT platform for transferring information from RFID system

to the end-user. This host then transforms the information received from the RFID tag into usable

resource for the end-user. [13]

 Image Processing Based Automatic Toll Booth in Indian Conditions

In this research paper we examine the image and the respective information will be

processing based toll collection system and how to make more efficient and perfect. On any toll

both the vehicle has to stop for paying the toll. In this paper the authors are trying to develop a

system that would pay the toll automatically and reduce the queue at the toll booth. In this

system camera is used for capturing the image of the vehicle number plate. The captured image

would be converted into the text using ANPR and the toll would be cut from the customer’s

account and then open the gate. Moreover in this system if a vehicle is stolen and an entry is

being made in the central database by the police then if the vehicle passes through the toll both

then silent alarm would buzz which would indicate the operator at the toll booth that the vehicle

is a stolen vehicle. For the identification of the vehicles, the information of the vehicles is

already stored on the central database. So captured number will be sent to the server received at

the toll.

The purpose of this paper is collecting the toll according to vehicles and builds the real

time application which recognizes vehicles licenses number plate at entry gate. Automatic toll

collection is considered as one of the intelligent transport systems. It is aimed at making toll

taxation more efficient, reliable, and safe and environment friendly. In the past, customer would

have to wait at the toll booth to pay the collector, creating traffic congestion, pollution and of

course of a lot of frustration. Today Automatic toll collection successfully removes unnecessary

traffic delays keep an eye on any car that might not be correctly registered. Automated toll

collection is fast becoming a globally accepted of toll collection. IPTB system is used as a

system for fast and efficient collection of toll at the toll plazas. This is possible as the vehicles

passing through the toll plaza do not need to stop to pay toll and the payment automatically takes

place from the account of the user. This automatic system used the technology of ANPR.

Hence this system works very fast with the best results. This new toll system depends on

four components.

31

• AVI (automatic vehicle identification): Automatic vehicle identification systems are used

for the purpose of effective control. License plate recognition (LPR) is a form of

automatic vehicle identification. It is an image processing technology used to identify

vehicles by only their license plates. Real time LPR plays a major role in automatic

monitoring of traffic rules and maintaining law enforcement on public roads. Since every

vehicle carries a unique license plate, no external cards, tags or transmitters are required.

• AVC (Automatic Vehicle Classification): In IPAT (image processing automatic toll)

system, AVC automatically verifies the classifications of vehicles. Because the vehicle is

already classified at the time of registration.

• Traffic Controller System: Traffic controller system is a computer system which manages

the traffic in a single row or line by using Traffic signals and sensors.

• Central Server: For more security and maintain records of each toll and customers

Central server is required. A central server stores the data which comes from different toll

plaza. A local computer of every toll plaza is connected to a central server through

Internet. The consumer / owner have to register in a central server and deposit money in

their account. AVI and AVC totally depend on the vehicle license number plate.

The benefits for the motorists include:

• Less or shorter queues at toll plazas by increasing toll booth service Turnaround rates.

• Faster and more efficient service (no exchanging toll fees by hand).

• The ability to make payments by keeping a balance on the register account.

• The use of prepaid toll statements (no need to request for receipts). [15]

 Dynamic approach towards Toll Tax Collection & vehicle tracking with the help of

RFID

This paper focuses on use of radio frequency identification (RFID) technology for ETC

system. The primary requirement is to eliminate the need for motorists and toll authorities to

manually perform ticket payments and toll fee collections respectively. The proposed RFID

system uses tags that are mounted on the front glass of vehicles, with the help of which

information on the tags are read by RFID readers.

This system has been around since 1992, during which RFID tags began to be widely

used in vehicles to perform toll collection process automatically. Data information exchanged

32

between the owner of vehicle and toll authorities is done efficiently. Due to which the problem

of traffic congestion and human errors in the system is effectively rectified. Million of

drivers/consumer passes through toll booths paying toll tax. The past toll payment system was

manual and drivers are using manual system using coin or cash by hand to cross the toll plaza

gate. Manual process is too much time consuming and drivers have to wait in row for long time

for crossing the toll plaza. In waiting time fuel of vehicle is also consuming fuel. Now days this

manual toll deduction system is changed to automated system. Where driver no wait for pay cash

or get token to cross the toll plaza. This automatic system used the technology of RFID. This

new automated system works very fast with the help of RFID. RFID based automated Toll

Collection system (RATS) is a fairly mature technology that allows for electronic payment for

motorways and expressways. An Electronic Toll Collection system is able to determine if a car is

registered in a toll payment program, alerts enforcers of toll payment violations, and debits the

participating account. Electronic toll collection is fast becoming a globally accepted method of

toll collection, a trend greatly aided by the advancement in the field of interoperable Electronic

Toll Collection technologies.

Radio Frequency Identification (RFID) is an auto identification technology which uses Radio

Frequencies (between 30 kHz and 2.5GHz) to identify objects remotely. The system does the job

of detecting and accounting for vehicles as they pass through a tollgate using RFID as the

identification technology. The system is a great asset in the transport industry. It reduces the

common problems in accounting for the transportation of goods from point to point. This can be

further developed to support the satellite surveillance systems once all toll gates are networked.

An RFID tag is loaded with information in the form of an Electronic Product Code, which can be

read over a considerable distance, with the help of which we can identify the vehicle and

enhance a transaction to be undertaken with respect to the specific tag data, taking advantage of

radio frequencies and ability to travel longer ranges with better data capacities and high speed

attained with maximum accuracy. [16]

 Development of a Model for Electronic Toll-Collection System

The paper presents a new method for ETC system and to match car number plate detection

system. The electronic toll collection system (ETS) has been fabricated based on microcontroller.

Here a system is developed to collect tolls according to the weight of the vehicle. The car

33

number plate detection method utilizes template matching technique to approximate the location

of car number plate.

Then, using this output from the template matching method, color information is used to

eliminate the unwanted color areas from the approximate number plate region without affecting

the correct color regions. Hence, the number plate region can be determined more accurately.

This work can easily be done by image processing system using MATLAB. The method has low

complexity and reduced the processing time magnificently. This automated system also shows a

better performance in highway traffic management. This paper shows the gateway to fabricate a

highly automated toll-plaza.

The purpose of this paper is to collect toll according to the weight of the vehicles and to

build a real time application which recognizes license plates from cars at a gate, for example at

the entrance of a parking area. The endeavor of our work was to develop a highly automated toll-

collection system. The automated system classifies a vehicle based on its load range. In recent

world, while collecting tolls in the bridges/ tunnels there may arise various problems such as:

lengthy process for money transactions, which leads long traffic congestion as well.

Moreover, it is time consuming and not accurate. The overloaded vehicles give the same

amount of toll like the unloaded one though the overloaded vehicles damage the bridge more

than that of the unloaded one. In some cases the vehicles carry a huge amount of load which

crosses the legal limit. Moreover, corruption is also a major problem here. This is why; such a

toll collection system is fabricated here. This toll-collection system is designed for achieving a

fraud free and completely auditable operation by accurately detecting and registering vehicle

movements and toll collector’s activities. A central control system is introduced here for online

monitoring of the tool-plaza. The objectives of image processing based electronic toll collection

are many. It gives an accurate data as well as saves the license plate of the vehicles to recognize

any unwanted vehicle. [21]

34

CHAPTER 5

METHODOLOGY USED

5.1 TWO-STACK PUSH DOWN AUTOMATA

In computer science, a pushdown automaton (PDA) is a type of automaton that employs a

stack. Pushdown automata are used in theories about what can be computed by machines. They

are more capable than finite-state machines but less capable than Turing machines. A Push-

Down Automata is a finite automata with auxiliary storage devices called stack. A pushdown

automaton may be pictured as a finite automaton with the stack or pushdown store onto which

symbols may be ‘pushed’ or from which they may be ‘popped’. A normal PDA has one stack

which controls the parsing of the input string in input tape and on each input the input tape will

move one cell left. [1]

The fact is clearly known that the compilers design for the compilation purpose has great

use of push down automata, a part of automata machine. In particular, we show a procedure to

design the parsers or syntax analyzer using the concept of pushdown automata and it is very

important part of the compilation. Mainly Pushdown automata have three components, out of

these stack is most important one. The stack may vary according to the requirement of the input

and automata machine. Stack is a data structure works on the basis of LIFO (Last In First Out).

Where top of the stack increases as the value is inserted in the stack called PUSH and decreases

when the value is deleted from the stack called Popped. The communication between stacks is

only allowed by applying a synch. The pushdown machines have special case ‘Visibly Pushdown

Automata’ (VPA) where the stack operations are driven by the input. Push Down Automata can

be described with a formal grammar and it is more capable than a finite-state machine but less

than Turing machine. Increase in number of stacks in PDA increases the problem solving

capability and efficiency of PDA.

An automata machine designed for CFG (Context Free Grammar) is the Pushdown

Automata (PDA). The language generated by the CFG is CFL (Context Free Language) through

which the PDA is designed. Mehlhorn was the first to play with the input-driven pushdown

automaton in 1980, where input alphabet split into three classes and the type of the current

35

symbol determines whether the automaton must push onto the stack, pop from the stack, or

ignore the stack and the final complexity is O(log^2/log log n)[17]. A Pushdown Automata

contains three parts:

1. An input tape

2. A finite control

3. A stack (data structure)

Input tape contains the input values which can be moved one cell at a time to the left. The

control unit contains both tape head and the stack head, and finds itself at any moment in a

particular state. The stack is a sequential data structure. The input tape is read and the value is

inserted in the stack (called push operation). The value deleted from the stack is called pop.

 Input Tape

 Tape

 Head Direction of head movement

 Control Mechanism

 Stack

Figure 5.1 General Push Down Automata Model

 …… . . .

State Indicator

 1

4 2

 3

36

Definition of Normal PDA:

A general PDA machine can be represented as:

ε = (Q, Σ, Γ, , q0, Z0, F) where

 Q is a finite set of states.

 Σ is a finite set which is called the input alphabet.

 Γ is a finite set which is called the stack alphabet.

 is a finite subset of Q × (Σ ∪ { }) × Γ Q × Γ∗ , the transition relation.

 q0 ∈ Q is the start state.

 Z0 ∈ Γ is the initial stack symbol of stack1.

 F ⊆ Q is the set of accepting states.

5.1.1 Problem in Normal PDA and Variation of Stack

Normal PDA has one stack which controls the parsing of the input string in input tape

and on each input the input tape will move one cell left. It is highly impossible to solve and

support the all languages of context free grammar with normal PDA. Such as for the complex

context free languages like L={anbncn ;n≥1) the normal PDA will not work and hence we need

another option, Which might be complex and more time taking than PDA. These problems can

be solved by PDA by increasing the number of stacks into it.

The number of stacks may vary according to the requirements of input tape (input

alphabets) and the Parser machine. It can be increased in number of stacks in PDA if needed to

solve complex problems of CFL (Context Free language). Two-stack PDA is an important

variation of normal PDA. Push down Automata can be designed for acceptance of CFL by

considering two aspects:

 Acceptance by Final state: The PDA accepts its inputs by consuming it and finally it

enters in the final state.

 Acceptance by empty stack: IN the reading of input string from initial configuration for

some PDA, the stack of PDA becomes empty.

37

5.1.2 Need of Two-Stack PDA

It is highly impossible to solve and support the all languages of context free grammar

with normal PDA. Such as for the complex context free languages like L={anbncn ; n≥1) the

normal PDA will not work and hence we need another option, which might be complex and

more time taking than PDA. These problems can be solved by PDA by increasing the number of

stacks into it. The number of stacks may vary according to the requirements of input tape (input

alphabets) and the Parser machine. With increased in the number of stacks the PDA can be

designed for more complex CFLs. Since the Time Complexity of the stack operations (i.e. push

and pop) is O(1). Hence if we increase the number of stacks on a PDA, it won’t affect more in

the efficiency of the PDA. The push and pop operation can be performed in one iteration and

hence the complexity of the PDA will not high.

5.1.3 Components of Two-Stack PDA

 Two-stack PDA is a stack variation of normal PDA, the only difference is the number of

stacks present in the automata machine PDA. The two stacks PDA machine can be represented

as: ε = (Q, Σ, Γ, , q0, Z0, Z1, F) where

 Q is a finite set of states

 Σ is a finite set which is called the input alphabet

 Γ is a finite set which is called the stack alphabet

 is a finite subset of Q × (Σ ∪ { }) × Γ Q × Γ∗ , the transition relation.

 q0 ∈ Q is the start state

 Z0 ∈ Γ is the initial stack symbol of stack1

 Z1 ∈ Γ is the initial stack symbol of stack2

 F ⊆ Q is the set of accepting states

Example: Let the problem L = {anbncn; n ≥ 0}. It is not solvable by normal PDA but we can solve

this by two-stack PDA; in which:-

Q = {q0, q1, q2, q3}

Σ = {a, b, c}

Γ = {Z0, Z1, Za, Zb}

q0 = Initial state

38

Z0 = Initial symbol of first stack

Z1 = Initial symbol of the second stack

q3 = Final State

 Input Tape

 ….

 Tape

 Head Direction of head movement

 Control Mechanism Stack1 Stack2

 Figure 5.2 Two-stack Push Down Automata Model

Transitions are as follows:-

(q0, a, Z0, Z1) = (q0, ZaZ0, Z1)

(q0, a, Za, Z1) = (q0, ZaZa, Z1)

(q0, b, Za, Z1) = (q1, Za, ZbZ1)

(q1, b, Za, Zb) = (q1, Za, ZbZb)

(q1, c, Za, Zb) = (q2, ,)

(q2, c, Za, Zb) = (q2, ,)

(q2, , Z0, Z1) = (q3, ,)

For the input string w = a3b3c3; the two stack PDA is represented as:

 1

4 2

 3

 State Indicator

39

 a a a b b b c c c $ a a a b b b c c c $

 Step 1: Initial Stage Z0 Z1 Step 2: a is Pushed
 Stack1 Stack2

 a a a b b b c c c $ a a a b b b c c c $

 Za

 Za

 Za

 Step 3: Push all a into Z0 Z1 Step 4: Push b into Stack2
 Stack1 Stack1 Stack2

 a a a b b b c c c $ a a a b b b c c c $

 Za Zb

 Za Zb

 Step 5: Pop 1 element Z0 Z1 Step 6: Pop element
 from both stack from each stack

 Stack1 Stack2

Za

Za

Z0

Z1

Za

Za

Za

Z0

Zb

Z1

Za

Z0

Zb

Z1

Finite Control

q0

Finite Control

q0

 Stack1 Stack2

Finite Control

q1

Finite Control

q1

Stack1 Stack2

Finite Control

q3

Finite Control

q2

 Stack1 Stack2

40

 a a a b b b c c c $

 Step 7: accepted goto Z0 Z1
final state

 Stack1 Stack2

Figure 5.3 Use of Stack in Two-Stack PDA

5.2 REAL TIME CONSTRAINT NOTATION

A Real-time constraint notation are used in object-oriented language that provide

sufficient real-time specifications as one may expect from a real-time language, while integrating

these specifications within the object-oriented tapestry. Real Time Constraint Notation (RTCN)

is used for representing and modelling the constraints in real time modelling.

Languages like Object-Z, OCL etc. are equipped with such refinement machinery. There

is a high applicability of formal software verification in the development of security related

software in the previous 10 years. Various quality levels are defined by ISO in ISO 15408

standard different levels of quality for software testing and verification. Common criteria project

has been representing this standard with the members of security organization in the whole

world. Various formal specifications and verifications tools have been introduced for quality and

standard software development process. The area of concentration includes projects of security

from verification of hardware circuit to verification of software driver. Specially, model tool

checking has been seen as a successful tool.

5.2.1 Introduction of RTCN

We can perform formal verification of real time systems by RTCN. The functioning of

the Real Time System is carried out by formal verification for ensuring efficient performance

and functioning. The two-stack PDA Model verification by Sequence Diagrams in the form of a

Formal Language And toll plaza database management system verification by Sequence

Diagrams in the form of a formal language. Formal Description Languages support language

Finite Control

q1

41

standardization program verification and software reliability. There are three distinct approaches

to specify a programming language:

 Operational Semantics

 Axiomatic semantics

 Devotional semantics [1]

A language in the form of operation of an abstract machine is called operation semantics,

which gives an abstract interpreter of the language. A language in terms of assertions and

inference rules for reasoning about the programs is known as axiomatic semantics. The

Axiomatic specification of a programming language will be mathematical theory for that

language. A Devotional semantics is most useful devotional semantics of the well known

programming language ADA, PASCAL and LISP can be found. The formal specification

language is often used as a Meta - language for describing programming language semantics.

For model checking we need to have description of system and a specification of properties.

Generally these properties are represented in Computational Tree Logic (CTL). For model

specification we can have OCL based approach wherein we can have OCL specifications instead

of CTL specifications. OCL extensions have been introduced by concepts based on time bounded

variant of CTL. Hence, real time and model checking specifications are carried out by OCL.

Once the constraints are specified for UML State Chart Diagrams (state space) they can be used

for past oriented temporal logics and Activity Diagrams without any modifications. The key role

has been played by description techniques with a modeling method which defines a various

views of the systems. Few description techniques from UML, have been used which are

specialized for enabling definition of semantics. They are as follows:

 Informal Text and Diagrams (ITD)

 Programming Language (PL)

 State Transition Diagram (STD)

 Specification Language (SL)

 Message Sequence Chart (MSE)

 Object Model (OM)

The above discussed documents are providing with mathematical system model based

semantics. Using this semantics, a precise semantics for documents has achieved along with an

42

integrated one. This permits to represents transformation among documents along with the

rigorous context conditions among various description techniques. The system development has

been represented by the development graph which consist the documents in the form of nodes

and dependencies among the direct arcs. Each document will contain all the information of its

predecessor so the document state is captured to analyze whether it is redundant or important.

This information is necessary for development process so that it can analyze requirements,

design decisions and to permit changes in the requirements in a prescribed way.

5.2.2 Object Oriented Real Time Modelling

The significant aspects in object oriented real-time modelling can be identified as:

 The use of inheritance and redefinition of real time constraint through the inheritance

hierarchy and extension of the inheritance of the state and behaviour of a class to include

the definition of temporal constraints.

 The reuse of the temporal constraints specifications through the inheritance mechanism

and across class boundaries.

 Time-abstraction seems like a natural approach to specifying timing constraints, where

the constraint is defined at the class definition and then associated with the class

implementation.

Software engineering and specifically real-time embedded software is still an emerging area.

It is applied to enhance the complex systems and its modelling approaches are neither prefect nor

reliable. Software models have a specific and remarkable advantage over the other engineering

approaches like they could be used to automatically produce executable programs for specific

platforms. Mathematical explanation of the modelling language semantics gives the effort to

explain properly about system’s characteristics and to forecast its behaviour and functioning.

Adequate real-time software models could be developed, yet there is another problem of getting

it automatically from a model and finally its implementation is a way that produces code which

behaves appropriately as the model. An expressive, well founded transformation mechanism for

automatic and proprietary accepting code generation design methodology has been developed.

The development of the system must be based on the Platform Independent Model. This is

43

finally derived from Platform Specific Model (PSM). At the meta level queries, views and

transformations are areas that would be important for wellness of MDA.

Formal verification in model refinement: The model refinement using formal

verification can be best explored if models are created using the language with following

features:

 Language has formal refinement mechanism.

 Language can evaluate all refinements possible from a given model.

 Language can prove that a particular model is outcome of refinements on a given model.

5.2.3 Characteristics

One of the choices of designers for developing real time System is UML, for enhancing

UML notation in modeling of real time application several approaches have been developed. For

applying additional constraints over UML model, the model developers use OCL. Presently,

temporal constraints cannot be fully expressed using Uεδ’s real time extension and OCL. Also

dynamic behavior involved in UML models (like state evolutions and transitions) cannot be

specified significantly using OCL. But, real time systems need to ensure system behavior

correctly and thus need these constraints, to be specified correctly. For this, an OCL extension is

proposed which is capable of expressing time bounded constraints. UML provides a technique to

present design decisions and requirements at various stages in the software development process.

For modeling the behavior of system the level of abstraction should be used that gives adequate

information for generating precise diagrams. Sequence Diagram (SD) and State Charts (SC).

Sequence Diagram (SD) is much interpretable for humans to produce and explain, while State

chart describes system behavior in depth.

Real Time Constraint Notation Model Terminology: Constraints in real time systems

are modelled using Real Time Constraint Notations (RTCN).

 Sequence Diagram and Message Sequence Charts:

In UML, scenarios can be represented using two main kind of representing scenarios:

Sequence diagram and Collaboration diagrams. Sequence Diagram focuses on order of

44

events with respect to time and the structure of interactions among objects are represented by

collaboration diagrams.

 Scenario Composition:

It plays a significant role in description of Real Time System models. Program’s structure

must be reflected by the sequence diagrams.

 Defining Finite State Machine and State Charts:

FSM (Finite State Automata) defines a system by defining all the possible states and all

the transitions that are possible among these states. But, for a complex system, we will have a

large FSM which would be beyond the comprehension of people. FSM suffers with state

explosion problems which can be controlled using State charts.

 Explaining State Chart Synthesis:

To ensure the completeness of information for precise cohesive diagram, the real time

system model has been utilized. In software development process, first of all Sequence

Diagrams are developed and hence, we compose the state chart from sequence diagram.

 Representing Sequence Diagram Composition:

UML sequence diagrams do not depict composition information. Message sequence

charts use hierarchical graphs to represent the composition information.

 Deterministic Grammar:

The major issue in state chart composition utilizing just adequate information from

couple of sequence diagrams for developing precise state charts. These state charts should

not reflect ambiguous data. For a given sequence diagram, corresponding Context Free

Grammar (CFG) will constitute a set of message – response pairs. Unique response/

responses must be generated by an object corresponding to every message (or set of

messages).

SD → message response SD |

Here depicts that no message or response is present. Objective here is to develop a State

Diagram using context free grammar (CFG) of the form:

message response → ⍺ResponseA | βResponseB | xResponseC

where ⍺, β and x are specific sequences of messages.

 Representation of State Information, Data and Timing Information:

45

For generating a deterministic state chart, state information will be required. It may be

possible that execution depends on some data values which are stored but does not represent

any state or transition in the model. This additional information is depicted using pre and post

conditions. The timing information, like duration of simulation should create a response of a

real time system. The major goal of models is to support engineers with the interpretable

concepts of a system, before receiving the expense and problem of actually producing it.

Software engineering has a well established modeling approach and their application of

models is identified as a useful and effective approach.

5.3 OBJECT CONSTRAINT LANGUAGE

The Object Constraint Language is capable of defining constraints over object-oriented

system and thus is an expression language. In an object oriented system, the constraints are

identified as restrictions imposed on the values. Object Management Group (OMG) having about

700 companies aims at providing a framework for development of applications (with the help of

object oriented programming methodologies) and standards for object oriented design and

analysis. Now-a-days software professionals are rapidly getting habitual with OCL. At times,

UML diagrams fail at representing constraints (like on ions, pre and post conditions) and at this

point OCL plays a significant role. Expressions which involve accessing of attributes, invoking

operations etc can be constructed easily using OCL. The characters used in OCL lie in normal

alphanumeric set and hence is regarded as a simple language. OCL has proved to be significant

in large number of application thus exploring many under specified domains (involving UML

and OCL). [1]

5.3.1 Introduction of OCL

 The Object Constraint Language (OCL) is an expression language that enables one to

describe constraints on object-oriented models and other object modeling artifacts. A constraint

is a restriction on one or more values of (part of) of an object oriented model or system. OCL is

the part of the Unified Modeling Language (UML), the OMG (Object Management Group, a

consortium with a membership of more than 700 companies. The organization's goal is to

provide a common framework for developing applications using object-oriented programming

techniques) standard for object – oriented analysis and design. OCL has been used in a wide

46

variety of domains, and this has led to the identification of some under – specified areas in the

relationship between OCL and UML.

Recently, Object Constraint Language (OCL) is being used for formalization of Object

Oriented Language semantics. Apart from great acceptability of Unified Modeling Checker

(UMC), Object Constraint Language (OCL) has got an excellent identification of applicability.

OCL is mainly used for specifying constraints in UML diagrams (mainly on classes) and in

behavioral diagrams (on guards). But still OCL cannot provide sufficient specification for the

constraints over dynamic behavior of diagrams i.e. OCL cannot sufficiently specify constraints

over state configurations of states, their evolution and transitions with time. Therefore, real time

specifications are not possible using OCL. Equivalence and model checking method in formal

verification have been used for few applications. OCL can be used for a number of different

purposes:

 To specify invariants on classes and types in the class model.

 To specify type invariants for Stereotypes.

 To describe pre- and post- conditions on Operations and Methods.

 To describe guard.

 As a navigation language.

 To specify constraint on operations.

5.3.2 UML and OCL

The Object Constraint Language is a modeling language with which we can build

software models. It is defined as a standard “add-on” to the Unified Modeling Language (UML).

Every expression written in OCL relies on the type (i.e. the classes, interfaces and so on) that are

defined in the UML diagrams. OCL expressions can be used anywhere in the model to indicate a

value. An outstanding characteristic of OCL is its mathematical foundation. It is based on

mathematical set theory and predicate logic and it has a formal mathematical semantics.

In OCL, UML operation semantics can be expressed using pre and post condition

constraints. The pre condition says what must be true for the operation to meaningfully execute.

The post condition expresses what is guaranteed to be true after execution completes about

 the return value

 any state changes (e.g. instance variables)

47

The development of software models are utilizing the OCL, hence regarded as a

modeling language. OCL when used along with UML supports a lot more additional features.

OMG is a standard for analyzing and designing in object oriented manner. Each expression

which is represented in OCL is based on the types (whether classes or interfaces or any other)

which are explained in the UML diagrams. Therefore UML will definitely be used in the OCL

based applications. Models serve as building block for the development of software, a significant

feature of MDA. A combined effort of OCL and UML produces consistent models.

5.3.3 Characteristics of OCL

A model has more than one class, required OCL statements to be a consistent model.

With the help of UML diagrams many inconsistencies would persist. Therefore, OCL is a

necessary language for developing efficient models.

 Query and Constraint Language Description: Earlier, OCL was assumed to be just

limited to constraint implementation where constraints define the conditions when system

data values and objects would be valid. In UML 2, constraints and statements in the UML

designs can be defined using OCL. Taking an example, say we have a statement 2+7. It is

a genuine OCL statement of integer type, depicting integer value 9. An OCL expression

can be used as constraint, if it is of type Boolean. OCL expressions represent a value.

Which can be a simple value, (like an integer), a collection of values, may be a reference

to an object, or a collection of references to objects. A Boolean value which represents a

message in an interaction diagram or a constraint in a state chart can also be represented

using an OCL expression. OCL has same capabilities as SQL. We can use a single OCL

expression representing the whole body of a query operation. But, SQL is not a constraint

language whereas OCL is a both a query and a constraint and language at the same time.

 Foundation with Mathematical Logic: OCL is based on predicate logic and set theory,

making it significant. One who is familiar with mathematical notation can easily use to

represent accurate statements but not everyone can interpret it. Hence, a mathematical

notation cannot be considered as a standard language. For a modelling language we need

to have precision using mathematics, as well as it should be as simple as natural

language. Both the above requirements are conflicting, so we need to look for a balance

48

between these requirements. OCL provides this balance using mathematical concept and

simple ASCII words. Therefore, we have an unambiguous language which is easy for

both, users of object technology and their customers. One can also define syntax of OCL

for himself provided that syntax should map to the language structures as defined in the

standard.

 Strongly Typed Language: As OCδ expressions specify the type of data hence it’s a

typed language. It is not necessary that every model is directly executed and hence there

would w many OCL expression written for which corresponding systems will don’t have

executable versions. Even then, one can test an OCL expression. These expressions can

be checked before execution (i.e. while modelling phase) and hence errors can be

removed at modelling stage only.

 Declarative Language: OCL expressions describe what is to be accomplished rather

than how to do it hence it comes under declarative language category. When an OCL

expression is evaluated, it does not affect the system’s state. The model developers do not

go deep into how computations should be done, rather decisions are made at high level

abstraction. Something should be accomplished depends on the implementation

approach. One can mention the associations in the coding on the implementation

approach. [24]

OCL is mainly focusing on the application of constraints in the UML diagrams. Object

Oriented Languages and their semantics are well modelled by using Object Constraint Language

(OCL). These OCL integrated UML is being utilized for the modelling of real time systems. For

the formal verification of the developed models, such types of approaches are highly applicable.

OCL has been utilized in various forms:

 Specification of constraint on operations

 To define guard

 As a navigation language

 To define pre and post- conditions on Operations and Methods

 Specification of type invariants for Stereotypes

 Specification of invariants on classes and types in the class model

49

CHAPTER 6

PROPOSED WORK

6.1 FLOW CHART OF PROPOSED PDA MODEL

A flowchart is a type of diagram that represents an algorithm workflow or process,

showing the steps as boxes of various kinds, and their order by connecting them with arrows.

This diagrammatic representation illustrates a solution model to a given problem. Flowcharts are

used in analyzing, designing, documenting or managing a process or program in various fields.

Flowcharts are used in designing and documenting simple processes or programs. Like other

types of diagrams, they help visualize what is going on and thereby help understand a process,

and perhaps also find flaws, bottlenecks, and other less-obvious features within it. This technique

allows the author to locate the responsibility for performing an action or making a decision

correctly, showing the responsibility of each organizational unit for different parts of a single

process. Flowcharts depict certain aspects of processes and they are usually complemented by

other types of diagram.

Types of Flowchart: Flowcharts can be modeled from the perspective of different user groups

and that there are 4 general types:

 Document flowcharts, showing controls over a document-flow through a system

 Data flowcharts, showing controls over a data-flow in a system

 System flowcharts, showing controls at a physical or resource level

 Program flowchart, showing the controls in a program within a system

Notice that every type of flowchart focuses on some kind of control, rather than on the

particular flow itself. In addition, many diagram techniques exist that are similar to flowcharts

but carry a different name, such as UML activity diagrams.

Working of two-stack PDA model for maintaining record of the vehicles passing through

a Toll Plaza in clustered way can be represented by the flow chart as shown in figure 6.1 below:

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Activity_diagram

50

Figure 6.1 Flow chart for working of two-stack PDA model for vehicles record passing

through a Toll Plaza

 START

Vehicles coming from either of the ways

Vehicles Passed through Toll-Plaza

Vehicle record updating process starts by STACK PUSH operation

Input

string is of

Type1

[OR]

Type2

PUSH into stack1 PUSH into stack2

 Type1 Type2

 Stack =FULL

YES

NO

Vehicle records clustering process START by STACK POP

operation

Clustered View of vehicles passing through Toll Plaza

 END

If

[OR] User wants to

 POP

51

6.2 ALGORITHM

In mathematics and computer science, an algorithm is a self-contained step-by-step set of

operations to be performed. Algorithms perform calculation, data processing and/or automated

reasoning tasks. An algorithm is an effective method that can be expressed within a finite amount

of space and time and in a well-defined formal language for calculating a function. Starting from

an initial state and initial input (perhaps empty) the instructions describe a computation that,

when executed, proceeds through a finite number of well-defined successive states, eventually

producing “output” and terminating at a final ending state. The transition from one state to the

next is not necessarily deterministic some algorithms, known as randomized algorithms

incorporate random input. An algorithm is a procedure or formula for solving a problem. Simple

as the definition of the notion of algorithm is, the concept of what it attempts to convey is a

matter of debate and scientific research. An algorithm is a sequence of unambiguous instructions

for solving a problem, i.e. for obtaining a required output for any legitimate input in a finite

amount of time.

It means an algorithm is the step by step procedure designed to perform an operation, and

which (like a map or flowchart) will lead to the sought result if followed correctly. Algorithms

have a definite beginning and a definite end and a finite number of steps. An

algorithm produces the same output information given the same input information and several

short algorithms can be combined to perform complex tasks such as writing a computer program.

A cookbook recipe, a diagnosis, a problem solving routine is some common examples of simple

algorithms. Suitable for solving structured problems algorithms are, however, unsuitable for

problems where value judgments are required. The proposed algorithm for our Two-Stack PDA

model is given below:

While (input != empty) {

 Read input[i]

If (input[i] == type1) {

If (stack2 != empty)

Change state

Push (input[i]) in stack1

52

Count1 ++ }

Else if(input[i] == type2) {

 If (is first iteration)

 Change state

 Push (input[i]) in stack2

 Count2 ++ }

Else {

 If (is first iteration)

 Change state

 If (stack1 == empty || stack2 == empty)

 Break

 Else {

 Pop (stack1)

 Pop (stack2) }

} }

If (input tape == empty && stack1 == empty && stack2 == empty)

 Input string accepted

Else if (input tape == empty && count1 == count2) {

 Free (stack1)

 Free (stack2)

 Input string accepted }

Else

 Input string is rejected

STOP.

6.3 STEPS INVOLVED

The following steps those are mentioned below can be modeled with the help of two-

stack PDA with the help of the implementation of the above algorithm. The steps are following:

53

1. Read input tape

2. Check its type

2.1. If input type = type1 then push into stack1

2.2. Change state if stack 2 in NOT empty

2.3. Increment count1 by one

3. if input type is of type2

3.1. Change state if it is first iteration of type2

3.2. Push input value into stack2

3.3. Increment count2 by one

4. Else change state

4.1. If it is first iteration of other type

4.2. Check the stacks if stacks are empty then break the operation

4.3. Else POP(stack1) and POP(stack2)

5. Follow the above steps till input tape is empty

6. If input tape is ended and both stacks are empty then accept input

7. If input tape is empty and count1 = count2 then accept input

8. If above operations fail then reject it.

6.4 PDA TRANSITIONS FOR VEHICLE RECORD UPDATE

Figure 6.2 Incoming vehicles record updation process

Incoming

vehicle

Identification of

vehicle is from

which state

a & a` : U.P.

b & b` : Delhi

c & c` : Rajasthan

d & d` : Gujrat

Vehicle

record

updation by

PDA model

 Stack1 Stack2

54

Let us assume the input string is abcda`b`c`d`. Now, to achieve this goal, we design the two-

stack PDA as:

ε = (Q, Σ, Γ, , q0, Z0, Z1, ɸ) where

 Q: is the set of states for maintaining the vehicles record passing through toll plaza i.e.

Q = {q0, qPUSH, qPOP}

 Σ: is the finite set of input alphabets for vehicles from different states i.e.

Σ = {a, b, c, d, a`, b`, c`, d`} where:

• a and a` represents: vehicles from U.P.

• b and b` represents: vehicles from Delhi

• c and c` represents: vehicles from Rajasthan

• d and d` represents: vehicles from Gujrat

 Γ: is finite set of stack alphabets for vehicles from different states i.e.

Γ = {Z0, Z1, Za, Zb, Zc, Zd} where:

• Z0: is the initial stack alphabet of stack1

• Z1: is the initial stack alphabet of stack2

• Za: is the stack alphabet PUSHED into or POPPED from stacks when

vehicle is from U.P.

• Zb: is the stack alphabet PUSHED into or POPPED from stacks when

vehicle is from Delhi

• Zc: is the stack alphabet PUSHED into or POPPED from stacks when

vehicle is from Rajasthan

• Zd: is the stack alphabet PUSHED into or POPPED from stacks when

vehicle is from Gujrat

The PDA transitions for input string as mention above is:

i. (q0, a, Z0, Z1) = (qPUSH, ZaZ0, Z1)

ii. (qPUSH, b, Za, Z1) = (qPUSH, ZbZa, Z1)

iii. (qPUSH, c, Zb, Z1) = (qPUSH, ZcZb, Z1)

iv. (qPUSH, d, Zc, Z1) = (qPUSH, ZdZc, Z1)

v. (qPUSH, a`, Zd, Z1) = (qPUSH, Zd, ZaZ1)

55

vi. (qPUSH, b`, Zd, Za) = (qPUSH, Zd, ZbZa)

vii. (qPUSH, c`, Zd, Zb) = (qPUSH, Zd, ZcZb)

viii. (qPUSH, d`, Zd, Zc) = (qPUSH, Zd, ZdZc)

6.5 ID FOR VEHICLE RECORD UPDATE PROCESS

An instantaneous description (ID) for a PDA is a triple of the form (state, unconsumed

input, stack contents). The instantaneous description (ID) of a PDA is represented by a triplet (q,

w, s) where:

 q is the state

 w is unconsumed input

 s is the stack contents

Turnstile Notation: The “turnstile” notation is used for connecting pairs of ID’s that

represent one or many moves of a PDA. The process of transition is denoted by the turnstile

symbol “⊢”. Consider a PDA (Q, ∑, Γ, , q0, Z0, F). A transition can be mathematically

represented by the following turnstile notation: (p, aw, Tβ) ⊢ (q, w, αb)

This implies that while taking a transition from state p to state q, the input symbol ‘a’ is

consumed and the top of the stack ‘T’ is replaced by a new string ‘α’. If we want zero or more

moves of a PDA, we have to use the symbol (⊢*) for it. As per the rules, the ID for the input

string as mention above is given as below:

 q0, abcda`b`c`d`, Z0, Z1 ⊢ qPUSH, bcda`b`c`d`, aZ0Z1 ⊢ qPUSH, cda`b`c`d`, baZ0, Z1 ⊢ qPUSH, da`b`c`d`, cbaZ0, Z1 ⊢ qPUSH, a`b`c`d`, dcbaZ0, Z1 ⊢ qPUSH, b`c`d`, dcbaZ0, a`Z1 ⊢ qPUSH, c`d`, dcbaZ0, b`a`Z1 ⊢ qPUSH, d`, dcbaZ0, c`b`a`Z1 ⊢ qPUSH, , dcbaZ0, d`c`b`a`Z1

6.6 PDA TRANSITION TO GENERATE CLUSTER VIEW

The vehicle log record update process, as shown in Figure 6.2, will continue till stack is

full or user itself wants to pop. When either of the two pop conditions occurred, then transitions

for cluster view generation start according to the following steps:

56

Step (I): When the pop condition came then $ symbol is generated on the input tape and qPUSH is

converted to qPOP

i. (qPUSH, $, d, d`) = (qPOP, d, d`)

ii. (qPUSH, $, c, c`) = (qPOP, c, c`)

iii. (qPUSH, $, b, b`) = (qPOP, b, b`)

iv. (qPUSH, $, a, a`) = (qPOP, a, a`)

Step (II): The following transitions occurred for the generation of cluster view with the help of

STACK POP operations as follows:

i. (qPOP, $, a, a`) = (qPOP, ,)

ii. (qPOP, $, b, b`) = (qPOP, ,)

iii. (qPOP, $, c, c`) = (qPOP, ,)

iv. (qPOP, $, d, d`) = (qPOP, ,)

Step (III): When the top of stack1 = Z0 and stack2 = Z1, it implies that all the stack alphabets

corresponding to different states are popped out and top of the stack1 is Z0 and stack2 is Z1 then

state qPOP is transit to qPUSH and the PDA model is ready to update the new vehicle log record

into stacks. Step III condition in two-stack PDA model can be completed with the help of

transition:

i. (qPOP, $, Z0, Z1) = (qPUSH, Z0, Z1)

57

CHAPTER 7

BENEFITS OF PROPOSED MODEL

In this project we develop an interactive and communicative framework that can maintain

a record of the vehicles coming from various states. It focuses on development of a feature to

view vehicles coming from which territory in cluster view. We can calculate the total revenue

generated territory wise and generate a cluster view of vehicle logs.

Figure 7.1 Output Clustered View of proposed model

It helps in comparative analysis, having the following importance:

 Financial leakage control.

 Vehicle tracking.

 Congestion Management.

 Low cost and easy to implement.

0

5

10

15

20

25

30

35

40

Revenue

Generated

(Thousands)

State Names

Revenue Generated State wise

58

Human Visualization:

The working of Push-down Automata model for vehicle passing through the particular

highway records storage in cluster way and can be represented by the graphical way as well.

Better Interaction and Analysis:

The interaction between the user and the framework can help in achieving better retrieval

results and interaction ranges from simply allowing the user to calculate the total tax generated

from a specific state.

Efficient Result:

In general, the automata theory always provides the more efficient result comparatively.

By model checking we will analysis and prove that the developed framework giving result more

efficiently in comparison to other existing models.

59

CHAPTER 8

IMPLEMENTATION WORK

8.1 DATABASE

A database is an organized collection of data. It is the collection of schemas, tables,

queries, reports, views and other objects. The data are typically organized to model aspects of

reality in a way that supports processes requiring information, such as modeling the availability

of rooms in hotels in a way that supports finding a hotel with vacancies. In this project, we are

using Oracle 11g as the backend database. As per the each and every Online Toll Tax Database

Management model there would be a database which would be working as backend of the

system. Systematically organized or structured repository of indexed information (usually as

a group of linked data files) that allows easy retrieval, updating, analysis, and output of data.

Stored usually in a computer, this data could be in the form of graphics, reports, scripts, tables,

text etc representing almost every kind of information. Most computer applications are databases

at their core.

The Oracle DBMS can store and execute stored procedures and functions within itself.

Pδ/SQδ (Oracle Corporation’s proprietary procedural extension to SQδ), or the object-oriented

language Java can invoke such code objects and/or provide the programming structures for

writing them. Oracle database management tracks its computer data storage with the help of

information stored in the SYSTEM tablespace. The SYSTEM table space contains the data

dictionary and often (by default) indexes and clusters. A data dictionary consists of a special

collection of tables that contains information about all user-objects in the database. Since version

8i, the Oracle RDBMS also supports “locally managed” tablespaces that store space management

information in bitmaps in their own headers rather than in the SYSTEM tablespace (as happens

with the default “dictionary-managed” tablespaces). Version 10g and later introduced the

SYSAUX tablespace, which contains some of the tables formerly stored in the SYSTEM

tablespace, along with objects for other tools such as OEM, which previously required its own

tablespace.

http://www.businessdictionary.com/definition/organized.html
http://www.businessdictionary.com/definition/structured.html
http://www.businessdictionary.com/definition/repository.html
http://www.businessdictionary.com/definition/information.html
http://www.businessdictionary.com/definition/group.html
http://www.businessdictionary.com/definition/data-file.html
http://www.businessdictionary.com/definition/analysis.html
http://www.businessdictionary.com/definition/output.html
http://www.businessdictionary.com/definition/data.html
http://www.businessdictionary.com/definition/computer.html
http://www.businessdictionary.com/definition/form.html
http://www.businessdictionary.com/definition/graphic.html
http://www.businessdictionary.com/definition/report.html
http://www.businessdictionary.com/definition/script.html
http://www.businessdictionary.com/definition/table.html

60

8.1.1 Tables

Tables are the basic unit of data storage in an Oracle Database. Data is stored in rows and

columns. We define a table with a table name, such as employees and a set of columns. We can

give each column a column name, such as employee_id, last_name and job_id; a data type, such

as VARCHAR2, DATE or NUMBER and a width. The width can be predetermined by the data

type as in DATE. If columns are of the NUMBER data type, define precision and scale instead

of width. A row is a collection of column information corresponding to a single record. We can

specify rules for each column of a table. These rules are called integrity constraints. One

example is a NOT NULL integrity constraint. This constraint forces the column to contain a

value in every row. We can also invoke transparent data encryption to encrypt data before storing

it in the data file. Then, if users attempt to circumvent the database access control mechanisms

by looking inside data files directly with operating system tools, encryption prevents these users

from viewing sensitive data.

After we create a table, insert rows of data using SQL statements. Table data can then be

queried deleted or updated using SQL. Before creating a table, we should also determine whether

to use integrity constraints. Integrity constraints can be defined on the columns of a table to

enforce the business rules of your database automatically. In this project we are working with

two tables which are discussed below.

 8.1.1.1 Main Table

 This is the main table of the Toll Plaza System, all the passing vehicles information are

stored into this. By accessing this main table anyone can retrieve the required information as per

their requirement. A snapshot of this table is as below:

61

Figure 8.1 Screenshot of MainTable

 8.1.1.2 Dummy Table

 In this project we had created a Dummy table to store the necessary data, which is

required to achieve our objective. The data into Dummy table is coming automatically as soon as

any new entry made to the MainTable. This task automation is achieved through triggers, which

is discussed under the very next topic. Having the dummy table, allows us to interact with

database even without knowing about the main central toll plaza database. It helps to improve the

confidentiality of data. A snapshot of Dummy table is as below:

Figure 8.2 Screenshot of Dummy Table

62

8.1.2 Triggers

8.1.2.1 Definition

A database trigger is a compiled stored program unit, written in either PL/SQL or Java, that

Oracle Database invokes (“fires”) automatically whenever one of the following operations

occurs:

 DML statements on a particular table or view, issued by any user

 DML statements modify data in schema objects. For example, inserting and deleting rows

are DML operations.

 DDL statements issued either by a particular user or any user

 DDL statements define schema objects. For example, creating a table and adding a

column are DDL operations.

 Database events

Oracle allows us to define procedures that are implicitly executed when an INSERT,

UPDATE, or DELETE statement is issued against the associated table. These procedures are

called database triggers. Triggers are similar to stored procedures, “Procedures and Packages”. A

trigger can include SQL and PL/SQL statements to execute as a unit and can invoke stored

procedures. However, procedures and triggers differ in the way that they are invoked. While a

procedure is explicitly executed by a user, application, or trigger, one or more triggers are

implicitly fired (executed) by Oracle when a triggering INSERT, UPDATE, or DELETE

statement is issued, no matter which user is connected or which application is being used.

Triggers are schema objects that are similar to subprograms but differ in the way they are

invoked.

8.1.2.2 Types of Triggers

Triggers can be categorized according to their means of invocation and the type of actions

they perform. Oracle Database supports the following types of triggers:

 Row Triggers: A row trigger fires each time the table is affected by the triggering

statement. For example, if a statement updates multiple rows, then a row trigger fires

https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#CBAHGBBD
https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#CBADGAJE
https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#CHDFBCII

63

once for each row affected by the UPDATE. If a triggering statement affects no rows,

then a row trigger is not run. Row triggers are useful if the code in the trigger action

depends on data provided by the triggering statement or rows that are affected.

 Statement Triggers: A statement trigger is fired once on behalf of the triggering

statement, regardless of the number of rows affected by the triggering statement. For

example, if a statement deletes 100 rows from a table, a statement-level DELETE trigger

is fired only once. Statement triggers are useful if the code in the trigger action does not

depend on the data provided by the triggering statement or the rows affected.

 Instead of Triggers: An instead of trigger is fired by Oracle Database instead of

executing the triggering statement. These triggers are useful for transparently modifying

views that cannot be modified directly through DML statements.

 Event Triggers: We can use triggers to publish information about database events to

subscribers. Event triggers are divided into the following categories:

• A system event trigger can be caused by events such as database instance start up

and shutdown or error messages.

• A user event trigger is fired because of events related to user logon and logoff,

DDL statements, and DML statements.

BEFORE vs. AFTER Triggers

When defining a trigger, we can specify the trigger timing. That is, we can specify

whether the trigger action is to be executed before or after the triggering statement. BEFORE and

AFTER apply to both statement and row triggers.

BEFORE Triggers: BEFORE triggers execute the trigger action before the triggering statement.

This type of trigger is commonly used in the following situations:

 BEFORE triggers are used when the trigger action should determine whether the

triggering statement should be allowed to complete. By using a BEFORE trigger for this

purpose, you can eliminate unnecessary processing of the triggering statement and its

eventual rollback in cases where an exception is raised in the trigger action.

 BEFORE triggers are used to derive specific column values before completing a

triggering INSERT or UPDATE statement.

64

AFTER Triggers: AFTER triggers execute the trigger action after the triggering statement is

executed. AFTER triggers are used in the following situations:

 AFTER triggers are used when you want the triggering statement to complete before

executing the trigger action.

 If a BEFORE trigger is already present, an AFTER trigger can perform different actions

on the same triggering statement.

Timing for Triggers: We can define the trigger timing i.e. whether the trigger action is to be run

before or after the triggering statement. A simple trigger is a single trigger on a table that enables

you to specify actions for exactly one of the following timing points:

 Before the firing statement.

 Before each row affected by the firing statement.

 After each row affected by the firing statement.

 After the firing statement

For statement and row triggers, a BEFORE trigger can enhance security and enable business

rules before making changes to the database. The AFTER trigger is ideal for logging actions.

A compound trigger can fire at multiple timing points. Compound triggers help program an

approach in which the actions that you implement for various timing points share common data.

8.1.2.3 Advantages of Triggers

The correct use of triggers enables us to build and deploy applications that are more robust

and that use the database more effectively. We can use triggers to:

 Automatically generate derived column values.

 Prevent invalid transactions.

 Provide auditing and event logging.

 Record information about table access

We can use triggers to enforce low-level business rules common for all client applications.

For example, several applications may access the employees table. If a trigger on this table

65

ensures the format of inserted data, then this business logic does not need to be reproduced in

every client. Because the trigger cannot be circumvented by the application, the business logic in

the trigger is used automatically. Excessive use of triggers can result in complex

interdependencies that can be difficult to maintain in a large application. Oracle automatically

manages the dependencies of a trigger on the schema objects referenced in its trigger action. The

dependency issues for triggers are the same as dependency issues for stored procedures. In

releases earlier than 7.3, triggers were kept in memory. In release 7.3, triggers are treated like

stored procedures; they are inserted in the data dictionary. Like procedures, triggers are

dependent on referenced objects. Oracle automatically manages dependencies among objects.

8.1.2.4 Creation of Triggers

The CREATE TRIGGER statement creates or replaces a database trigger. A PL/SQL

trigger has the following general syntactic form:

CREATE TRIGGER trigger_name

Triggering_statement

[trigger_restriction]

BEGIN

Triggered_action

END;

/

A PL/SQL trigger has the following basic components:

 Trigger name: The name must be unique with respect to other triggers in the same

schema.

 The trigger event or statement: A triggering event or statement is the SQL statement,

database event, or user event that causes a trigger to be invoked.

 Trigger restriction: A trigger restriction specifies a boolean expression that must

be true for the trigger to fire.

https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#CHDDJACC

66

 Triggered action: A triggered action is the procedure that contains the SQL statements

and code to be run when a triggering statement is issued and the trigger restriction

evaluates to true.

Execution of Triggers: Oracle Database executes a trigger internally using the same steps as for

subprogram execution. The only subtle difference is that a user has the right to fire a trigger if he

or she has the privilege to run the triggering statement. With this exception, the database

validates and runs triggers the same way as stored subprograms.

Storage of Triggers: Oracle Database stores PL/SQL triggers in compiled form in a database

schema, just like PL/SQL stored procedures. When a CREATE TRIGGER statement commits,

the compiled PL/SQL code is stored in the database and the source code of the PL/SQL trigger is

removed from the shared pool.

 In this project, a BEFORE INSERT trigger is applied on the MainTable which fires

automatically when ever any new entry made to the MainTable. A snapshot of created trigger is

as below:

Figure 8.3 Screenshot of created Trigger

https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#CBAIACIC

67

8.2 JAVA APIs

An application programming interface (API), in the context of Java, is a collection of

prewritten packages, classes, and interfaces with their respective methods, fields and

constructors. In Java, most basic programming tasks are performed by the API’s classes and

packages, which are helpful in minimizing the number of lines written within pieces of code. The

Java API, included with the JDK, describes the function of each of its components. In Java

programming, many of these components are pre-created and commonly used. Thus, the

programme is able to apply prewritten code via the Java API.

Java API is a list of all classes that are part of the Java development kit (JDK). It includes all

Java packages, classes, and interfaces, along with their methods, fields, and constructors. These

prewritten classes provide a tremendous amount of functionality to a programmer. A complete

listing of all classes in Java API can be found at Oracle’s website:

http://docs.oracle.com/javase/7/docs/api/. Java Development Kit (JDK) is comprised of three

basic components, as follows:

 Java compiler

 Java Virtual Machine (JVM)

 Java Application Programming Interface (API)

8.2.1 JAVA Introduction

Java is a computer programming language that is concurrent, class-based, object-oriented

and specifically designed to have as few implementation dependencies as possible. It is intended

to let application developers “write once, run anywhere” (WORA), meaning that code that runs

on one platform does not need to be recompiled to run on another. Java applications are typically

compiled to byte code (class file) that can run on any Java virtual machine (JVM) regardless of

computer architecture. Java is, as of 2014, one of the most popular programming languages in

use, particularly for client-server web applications, with a reported 9 million developers. Java

was originally developed by James Gosling at Sun Microsystems (which has since merged into

Oracle Corporation) and released in 1995 as a core component of Sun εicrosystems’ Java

platform.

http://en.wikipedia.org/wiki/Computer_programming_language
http://en.wikipedia.org/wiki/Class-based
http://en.wikipedia.org/wiki/Class_(file_format)

68

8.2.2 Stack

Stack is a subclass of Vector that implements a standard last-in, first-out stack. Stack

only defines the default constructor, which creates an empty stack. Stack includes all the

methods defined by Vector and adds several of its own. The Stack class represents a last-in-

first-out (LIFO) stack of objects. The usual push and pop operations are provided, as well as a

method to peek at the top item on the stack, a method to test for whether the stack is empty, and

a method to search the stack for an item and discover how far it is from the top. In this project

we will be creating two classes for stack since our proposed model is two stack PDA. The first

stack will perform PUSH operation as any vehicle came into, similarly the second stack will

also do PUSH operation when another vehicle came from opposite direction as earlier. When

we want to see the graphical view of vehicles passed through toll plaza then POP operation will

takes place.

8.2.3 JDBC

The JDBC API is a Java API that can access any kind of tabular data, especially data stored

in a Relational Database. JDBC helps you to write Java applications that manage these three

programming activities:

1. Connect to a data source, like a database

2. Send queries and update statements to the database

3. Retrieve and process the results received from the database in answer to your query

The following simple code fragment gives a simple example of the above three steps:

public void connectToAndQueryDatabase(String username, String password) {

 Connection con = DriverManager.getConnection(

 “jdbc:myDriver:myDatabase”, username, password);

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("some SQL query");

 while (rs.next())

 { // some code goes here }

}

69

JDBC Product Components: JDBC includes four components which are illustrated below:

1. The JDBC API: The JDBC API provides programmatic access to relational data from the

Java programming language. Using the JDBC API, applications can execute SQL

statements, retrieve results, and propagate changes back to an underlying data source.

The JDBC API can also interact with multiple data sources in a distributed,

heterogeneous environment. The JDBC 4.0 API is divided into two

packages: java.sql and javax.sql. Both packages are included in the Java SE and Java EE

platforms.

2. JDBC Driver Manager: The JDBC DriverManager class defines objects which can

connect Java applications to a JDBC driver. DriverManager has traditionally been the

backbone of the JDBC architecture. The Standard extension

packages javax.naming and javax.sql let you use a DataSource object registered with

a Java Naming and Directory Interface (JNDI) naming service to establish a connection

with a data source. You can use either connecting mechanism, but using

a DataSource object is recommended whenever possible.

3. JDBC Test Suite: The JDBC driver test suite helps you to determine that JDBC drivers

will run your program. These tests are not comprehensive or exhaustive, but they do

exercise many of the important features in the JDBC API.

4. JDBC-ODBC Bridge: The Java Software bridge provides JDBC access via ODBC

drivers. Note that you need to load ODBC binary code onto each client machine that uses

this driver. As a result, the ODBC driver is most appropriate on a corporate network

where client installations are not a major problem, or for application server code written

in Java in three-tier architecture.

JDBC Architecture: The JDBC API supports both two-tier and three-tier processing models for

database access.

In the two-tier model, a Java applet or application talks directly to the data source. This

requires a JDBC driver that can communicate with the particular data source being accessed.

70

Figure 8.4 Two-tier Architecture for Data Access

In the three-tier model, commands are sent to a “middle tier” of services, which then

sends the commands to the data source. The data source processes the commands and sends the

results back to the middle tier, which then sends them to the user.

Figure 8.5 Three-tier Architecture for Data Access.

JDBC allows multiple implementations to exist and be used by the same application. The

API provides a mechanism for dynamically loading the correct Java packages and registering

them with the JDBC Driver Manager. The Driver Manager is used as a connection factory for

creating JDBC connections. JDBC connections support creating and executing statements. These

Java Application

 JDBC

 DBMS

Client Machine

DBMS Proprietary Protocol

Database Server

Java Applet or HTML Browser

Application Server

 JDBC

Client Machine (GUI)

HTML, RMI, CORBA or Other Calls

 Server Machine

(Business Logic)

DBMS Proprietary Protocol

DBMS
Database Server

71

may be update statements such as SQδ’s CREATE, INSERT, UPDATE and DEδETE, or they

may be query statements such as SELECT. Additionally, stored procedures may be invoked

through a JDBC connection. JDBC represents statements using one of the following classes:

 Statement - the statement is sent to the database server each and every time.

 PreparedStatement - the statement is cached and then the execution path is pre-

determined on the database server allowing it to be executed multiple times in an efficient

manner.

 CallableStatement - used for executing stored procedures on the database.

DML statements such as INSERT, UPDATE and DELETE return an update count that

indicates how many rows were affected in the database. These statements do not return any other

information. Query statements return a JDBC row result set. The row result set is used to walk

over the result set. Individual columns in a row are retrieved either by name or by column

number. There may be any number of rows in the result set. The row result set has metadata that

describes the names of the columns and their types. There is an extension to the basic JDBC API

in the javax.sql. JDBC connections are often managed via a connection pool rather than obtained

directly from the driver.

JDBC Drivers: JDBC driver JDBC drivers are client-side adapters (installed on the client

machine, not on the server) that convert requests from Java programs to a protocol that the

DBMS can understand. There are commercial and free drivers available for most relational

database servers. These drivers fall into one of the following types:

 Type 1 that calls native code of the locally available ODBC driver.

 Type 2 that calls database vendor native library on a client side. This code then talks to

database over network.

 Type 3, the pure-java driver that talks with the server-side middleware those then talks to

database.

 Type 4, the pure-java driver that uses database native protocol.

72

8.2.4 Swing

Swing is the primary JAVA GUI widget toolkit. It is part of Oracle’s Java Foundation

Classes (JFC) - an API for providing a graphical user interface (GUI) for Java programs. Swing

was developed to provide a more sophisticated set of GUI components than the earlier Abstract

Window Toolkit (AWT). Swing provides a native look and feel that emulates the look and feel

of several platforms, and also supports a pluggable look and feel that allows applications to have

a look and feel unrelated to the underlying platform. It has more powerful and flexible

components than AWT. In addition to familiar components such as buttons, check boxes and

labels, Swing provides several advanced components such as tabbed panel, scroll panes, trees,

tables, and lists. Unlike AWT components, Swing components are not implemented by platform-

specific code. Instead they are written entirely in Java and therefore are platform-independent.

The term “lightweight” is used to describe such an element. The Internet Foundation Classes

(IFC) was a graphics library for Java originally developed by Netscape Communications

Corporation and first released on December 16, 1996. On April 2, 1997, Sun Microsystems and

Netscape Communications Corporation announced their intention to incorporate IFC with other

technologies to form the Java Foundation Classes. The “Java Foundation Classes” were later

renamed “Swing”.

Swing is a highly modular-based architecture, which allows for the “plugging” of various

custom implementations of specified framework interfaces. Users can provide their own custom

implementation(s) of these components to override the default implementations using Java’s

inheritance mechanism. Swing is a component-based framework, whose components are all

ultimately derived from the javax.swing.JComponent class.

8.2.5 JFrame

JFrame is a JAVA swing public class which is a top level container class just

like JApplet and JDialog which implies that it is a top level container, JFrame component is the

root of the containment hierarchy and has a content pane that contains the visible components,

directly or indirectly, in that top-level container's GUI. Borderlayout is the default contentPane

set for the JFrame component. When the user closes the window, JFrame component is hidden.

In order to let the JFrame behave similar to AWT Frame instance, the following code fragment is

used: setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE);

http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Widget_toolkit
http://en.wikipedia.org/wiki/Java_Foundation_Classes
http://en.wikipedia.org/wiki/Java_Foundation_Classes
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Abstract_Window_Toolkit
http://en.wikipedia.org/wiki/Abstract_Window_Toolkit
http://en.wikipedia.org/wiki/Look_and_feel
http://en.wikipedia.org/wiki/Pluggable_look_and_feel
http://en.wikipedia.org/wiki/Internet_Foundation_Classes
http://en.wikipedia.org/wiki/Graphics_library
http://en.wikipedia.org/wiki/Netscape_Communications_Corporation
http://en.wikipedia.org/wiki/Netscape_Communications_Corporation
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Netscape_Communications_Corporation
http://en.wikipedia.org/wiki/Java_Foundation_Classes

73

Any children of the JFrame have the contentPane as its parent. Following are the constructors

used in creating JFrame components:

 JFrame(): which creates a new frame that is initially invisible.

 JFrame(GraphicsConfiguration gc): which creates a Frame in the specified

GraphicsConfiguration of a screen device with a blank title.

 JFrame(String title): which creates a new, initially invisible Frame with the specified title.

 JFrame(String title, GraphicsConfiguration gc): which creates a JFrame with the

specified title and the specified GraphicsConfiguration of a screen device.

8.2.6 Util

Java.util package contains the collections framework, legacy collection classes, event

model, date and time facilities, internationalization, and miscellaneous utility classes. It contains

the collections framework, legacy collection classes, event model, date and time facilities,

internationalization, and miscellaneous utility classes (a string tokenizer, a random-number

generator, and a bit array). The package java.util contains a number of useful classes and

interfaces. Although the name of the package might imply that these are utility classes, they are

really more important than that. In fact, Java depends directly on several of the classes in this

package, and many programs will find these classes indispensable. The classes and interfaces

in java.util include:

 The Vector class, which supports variable-length arrays.

 The StringTokenizer class for parsing strings into distinct tokens separated by delimiter

characters.

 The EventObject class and the EventListener interface, which form the basis of the new

AWT event model in Java 1.1.

 The Calendar and TimeZone classes in Java. These classes interpret the value of

a Date object in the context of a particular calendar system.

 The class Date provides a convenient way to represent and manipulate time and date

information. Dates may be constructed from a year, month, day of month, hour, minute,

and second, and those six components, as well as the day of the week, may be extracted

from a date. Time zones and daylight saving time are properly accounted for.

74

8.2.7 Events and Event Handling

 Any program that uses GUI (graphical user interface) such as Java application written for

windows, is event driven. Event describes the change of state of any object. Example: Pressing a

button, Entering a character in Textbox. Change in the state of an object is known as event i.e.

event describes the change in state of source. Events are generated as result of user interaction

with the graphical user interface components. For example, clicking on a button, moving the

mouse, entering a character through keyboard, selecting an item from list, scrolling the page are

the activities that causes an event to happen. Some of the important even classes ant their listener

interfaces are listed below:

Table 8.1 Event class and their Listener Interface

 Event Classes Listener Interfaces

ActionEvent ActionListener

MouseEvent MouseListener and MouseMotionListener

MouseWheelEvent MouseWheelListener

KeyEvent KeyListener

ItemEvent ItemListener

TextEvent TextListener

AdjustmentEvent AdjustmentListener

WindowEvent WindowListener

ComponentEvent ComponentListener

ContainerEvent ContainerListener

FocusEvent FocusListener

Components of Event Handling: Event handling has three main components that are given

below:

 Events: An event is a change of state of an object.

 Events Source: Event source is an object that generates an event.

 Listeners: A listener is an object that listens to the event. A listener gets notified when

an event occurs.

75

Types of Event: The events can be broadly classified into two categories:

 Foreground Events: Those events which require the direct interaction of user. They are

generated as consequences of a person interacting with the graphical components in

Graphical User Interface. For example, clicking on a button, moving the mouse, entering

a character through keyboard, selecting an item from list, scrolling the page etc.

 Background Events: Those events that require the interaction of end user are known as

background events. Operating system interrupts, hardware or software failure, timer

expires, an operation completion are the example of background events.

Event Handling

Event Handling is the mechanism that controls the event and decides what should happen

if an event occurs. This mechanism has the code which is known as event handler that is

executed when an event occurs. Java Uses the Delegation Event Model to handle the events.

This model defines the standard mechanism to generate and handle the events. Let’s have a

brief introduction to this model.

The Delegation Event Model has the following key participants namely:

 Source: The source is an object on which event occurs. Source is responsible for

providing information of the occurred event to its handler. Java provide as with classes

for source object.

 Listener: It is also known as event handler. Listener is responsible for generating

response to an event. From java implementation point of view the listener is also an

object. Listener waits until it receives an event. Once the event is received, the listener

processes the event and then returns.

The benefit of this approach is that the user interface logic is completely separated from the

logic that generates the event. The user interface element is able to delegate the processing of an

event to the separate piece of code. In this model, listener needs to be registered with the source

object so that the listener can receive the event notification. This is an efficient way of handling

76

the event because the event notifications are sent only to those listeners that want to receive

them.

Steps involved in event handling:

 The User clicks the button and the event is generated.

 Now the object of concerned event class is created automatically and information about

the source and the event get populated with in same object.

 Event object is forwarded to the method of registered listener class.

 The method is now got executed and returns.

 Steps to perform Event Handling.

Following steps are required to perform event handling:

 Implement the Listener interface and overrides its methods.

 Register the component with the Listener.

For registering the component with the Listener, many classes provide the registration

methods. For example:

 Button

public void addActionListener(ActionListener a){…}

 MenuItem

public void addActionListener(ActionListener a){…}

 TextField

public void addActionListener(ActionListener a){…}

public void addTextListener(TextListener a){…}

 TextArea

public void addTextListener(TextListener a){…}

 Checkbox

public void addItemListener(ItemListener a){…}

 Choice

public void addItemListener(ItemListener a){…}

 List

77

public void addActionListener(ActionListener a){…}

public void addItemListener(ItemListener a){…}

Any number of event listener objects can listen for all kinds of events from any number

of event source objects. For example, a program might create one listener per event source or a

program might have a single listener for all events from all sources. A program can even have

more than one listener for a single kind of event from a single event source. Multiple listeners

can register to be notified of events of a particular type from a particular source. Also, the same

listener can listen to notifications from different objects. Each event is represented by an object

that gives information about the event and identifies the event source. Event sources are often

components or models, but other kinds of objects can also be event sources.

8.2.8 Graph (JFreeChart Library)

JFreeChart is a free 100% Java chart library created by David Gilbert. JFreeChart makes

it easy for developers to display professional quality charts in their applications. JFreeChart

requires the JCommon class library. JFreeChart is a free chart library for Java that can generate a

wide variety of charts for use in both client (Swing and JavaFX) and server (web) applications.

JFreeChart supports pie charts (2D and 3D), bar charts (horizontal and vertical, regular and

stacked), line charts, scatter plots, time series charts, high-low-open-close charts, candlestick

plots, Gantt charts, combined plots, thermometers, dials and more. JFreeChart can be used in

client-side and server-side applications.

JFreeChart Features: The major features of JFreeChart library are listed below -

 It is open source and 100% free. It is distributed under GNU Lesser General Public

License (LGPL), which permits its usage in commercial applications without any cost.

 It comes with well documented API which makes it quite easy to use.

 It supports a wide range of chart types like Pie Chart, Line Chart, Bar Chart, Area Chart

etc.

 JFreeChart is easy to extend and can be used in both client-side and server-side

applications.

 It supports multiple output formats like PNG, JPEG, PDF, SVG etc.

 It allows extensive customizations of charts.

http://www.jfree.org/jcommon/

78

Prerequisites for Use

 Java: JFreeChart is written entirely in Java and uses Java 2D API for drawing. The

current version of JFreeChart would work with JRE 1.4.2 or later.

 JFreeChart requires JCommon class library. It has common classes used by JFreeChart to

provide global utility functions.

Getting Started: Creating charts with JFreeChart is a simple three steps process illustrated

below:

 First create a dataset containing the data to be displayed in chart. The type of dataset

varies with type of chart to be created.

 Next step is to create a JFreeChart object for the particular type of chart we wanted to

create. We need to pass the dataset along with other parameters while creating this object.

 The last step is to initiate the process of drawing this chart on the target output like panel,

web page etc.

JFreeChart’s extensive feature set includes:

 A consistent and well-documented API, supporting a wide range of chart types.

 A flexible design that is easy to extend, and targets both server-side and client-side

applications.

 It support for many output types, including Swing and JavaFX components, image files

(including PNG and JPEG), and vector graphics file formats (including PDF, EPS and

SVG).

 JFreeChart is open source or, more specifically, free software. It is distributed under the

terms of the GNU Lesser General Public Licence (LGPL), which permits use in

proprietary applications.

Create Dataset: The dataset used by bar chart is of type org.jfree.data.category.

CategoryDataset. Similar to default implementation for pie chart dataset, there is default

implementation class for this dataset as well. The class is named

as org.jfree.data.category.DefaultCategoryDataset. This can be used as follows:

DefaultCategoryDataset objDataset = new DefaultCategoryDataset();

objDataset.setvalue(pass the required arguments);

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/licenses/lgpl.html

79

Create Bar Chart: Similar to the pie chart creation method, ChartFactory has a method to create

bar chart as well. The method name is createBarChart(). This method has few additional

properties. These are used to customize the bar chart. The following code snippet is used for that:

JFreeChart objChart = ChartFactory.createbarChart(

“Chart Title”,

“Domain axis label”,

“Range axis label”,

chartData, // Chart Data

PlotOrientation.VERTICAL, // orientation

true // include legend

true // include tooltips

false // include URLs);

Displaying Chart: Since we are going to display the chart in frame as well hence the display

part of code would remain the same. We just have to pass the bar chart instance reference instead

of pie chart. The following code snippet is used for that:

ChartFrame frame = new ChartFrame(“Demo”, objChart);

frame.pack()

frame.setVisible(true);

80

8.3 IMPLEMENTATION RESULT

 After running the project the following window will appear to the user, which consist

various options as per the requirement:

Figure 8.6 Screenshot of Main Window

81

8.3.1 Number of Passed Vehicles

 8.3.1.1 Show Graph of Type 1 Vehicles

Figure 8.7 Screenshot of Type-1 vehicles passed

 8.3.1.2 Show Graph of Type 2 Vehicles

Figure 8.8 Screenshot of Type-2 vehicles passed

82

8.3.2 Revenue Generated

 8.3.2.1 Revenue Earned by Type-1 Vehicles

Figure 8.9 Screenshot of revenue generated by Type-1 vehicles

 8.3.2.2 Revenue Earned by Type-2 Vehicles

Figure 8.10 Screenshot of revenue generated by Type-2 vehicles

83

8.3.3 Total

 8.3.3.1 Total Number of Passed Vehicles

Figure 8.11 Screenshot of Total Number of Passed Vehicles State wise

 8.3.3.2 Total Revenue Generated

Figure 8.12 Screenshot of Total Generated Revenue State wise

84

8.3.4 Stack

 8.3.4.1 POP Type-1 Stack

Figure 8.13 Screenshot of Stack-1 data items

 8.3.4.2 POP Type-2 Stack

Figure 8.14 Screenshot of Stack-2 data items

85

8.3.5 About

Figure 8.15 Screenshot of Help Menu Item

8.4 INTEGRATED DEVELOPMENT ENVIRONMENT

An Integrated Development Environment (IDE) is an application that facilitates

application development. In general, an IDE is a graphical user interface (GUI)-based workbench

designed to aid a developer in building software applications with an integrated environment

combined with all the required tools at hand. An IDE is a programming environment that has

been packaged as an application program, typically consisting of a code editor, a compiler, a

debugger, and a GUI builder. Most common features, such as debugging, version control and

data structure browsing, help a developer quickly execute actions without switching to other

applications. Thus, it helps maximize productivity by providing similar user interfaces (UI) for

related components and reduces the time taken to learn the language. An IDE supports single or

multiple languages.

The IDE may be a standalone application or may be included as part of one or more

existing and compatible applications. IDEs provide a user-friendly framework for many modern

programming languages, such as Visual Basic, Java, and PowerBuilder. An IDE is a software

application that provides comprehensive facilities to computer programmers for software

development. An IDE normally consists of a source code editor, build automation tools and a

debugger. Some IDEs contain a compiler, interpreter, or both, such as NetBeans and Eclipse;

others do not, such as SharpDevelop and Lazarus.

http://whatis.techtarget.com/definition/compiler
http://searchwindevelopment.techtarget.com/definition/Visual-Basic
http://searchsoa.techtarget.com/definition/Java
http://searchsoa.techtarget.com/definition/PowerBuilder

86

We are using NetBeans IDE 8.1 for implementing our thesis, which is the current version

of NetBeans IDE and was released on November 4, 2015. NetBeans is a software development

platform written in Java. The NetBeans Platform allows applications to be developed from a set

of modular software components called modules. Applications based on the NetBeans Platform,

including the NetBeans integrated development environment (IDE), can be extended by third

party developers. The NetBeans IDE is primarily intended for development in Java, but also

supports other languages, in particular PHP, C/C++ and HTML5. NetBeans is cross-platform and

runs on Microsoft Windows, Mac OS X, Linux, Solaris and other platforms supporting a

compatible JVM. In 1997, Roman Stanek formed a company around the project and produced

commercial versions of the NetBeans IDE until it was bought by Sun Microsystems in 1999. Sun

open-sourced the NetBeans IDE in June of the following year. Since then, the NetBeans

community has continued to grow. In 2010, Sun (and thus NetBeans) was acquired by Oracle. A

snapshot of the NetBeans IDE is as below:

Figure 8.16 Screenshot of NetBeans IDE

87

CHAPTER 9

CONCLUSION AND FUTURE WORK

This research work focuses on development of a feature to view vehicles coming from which

territory in cluster view and show this into clustered view of vehicles log. This clustered view

will help in comparative analysis. It is low in cost and easy to implement that will support into

financial leakage control. In future, this kind of interactive framework can also be maintained for

Airlines Database Management model for domestic and international flights as well. Further, this

model can be enhanced on the Ship Database Management for maintaining the log of different

ships for the purpose of comparative analysis.

Online Toll Tax Database Management is a rapidly changing and vast research area and

has many open questions and challenges. Designing a Toll Plaza system involves choosing

particular feature representation techniques, optimal dimensionality and reliable similarity

functions in order to achieve best results. The ultimate aim is to reduce the gap between semantic

information exchange between servers and making the Toll Plaza functionality faster. The real

time constraint notation is used for representing and modeling the constraints in real time

modeling. When these real time specifications will be integrated with in the object-oriented

tapestry then that provide sufficient real time specifications as one may expect from real time

language. So, as the future aspect of the proposed PDA model the RTCN being applied to the

PDA for formal verification of the proposed model.

The developed Online Toll Tax Database Management System using the PDA approach can

be extended to include stronger features and additional learning capabilities. This will provide

higher accuracy values thus facilitating the investigation of results. More database objects and

constraints can also be used to increase confidence in the results obtained and improve the

security threats. Investigations of the experimental results are further required for additional

insights into sample size issues. Moreover, this report is a starting point for enhancing a possible

set of features which could be included for appropriate and consistent performance evaluation.

This is crucial to enable comparison analysis of revenue obtained from various states on similar

grounds.

88

REFERENCES

[1] Vivek Kr. Singh, S. P. Tripathi, J. B. Singh and R. P. Agarwal, “Enhancement of User’s Call Logging

facilities using Push Down Automata with Real Time Constraint Notation”, International Journal of

Computer Science Issues(IJCSI), vol. 9, issue 3, 2012, pp. 216-220 .

[2] Mr.Abhijeet Suryatali and Mr. V. B. Dharmadhikari, “Computer Vision Based Vehicle Detection for

Toll Collection System Using Embedded Linux”, International Conference on Circuit, Power and

Computing Technologies [ICCPCT], IEEE, 2015, pp. 978-984.

[3] Padmavathi Shyadambi, Saikumari S, Jyoti Chitti, Deepika Paragoudar, Raghavendra Havin and

Praveenkumar Hadapad, “Toll Snapping And Processing System”, International Journal of Emerging

Technology in Computer Science & Electronics (IJETCSE), vol. 14, issue 2, 2015, pp. 63-66.

[4] Abel Shajan, Abin Jose and Kalung Tari, “Automatic Toll Collection System”, International Journal

of Emerging Trends in Science and Technology (IJETST), vol. 02, issue 04, 2015, pp. 2242-2247.

[5] Devadasu Saraswathi And P. Suresh Kumar, “Electronic Toll Collection System and GSM Trace for

Smart Vehicles”, International Journal of Scientific Engineering and Technology Research, vol. 04, issue

28, 2015, pp.5419-5424.

[6] P. Siva Kumar and R. S. Pratap Singh, “Implementing ALPR System using Vehicle LP Recognition

Information”, International Journal of Scientific Engineering and Technology Research, vol. 04, issue

15, 2015, pp. 2744-2746.

[7] Hong Yang, Kaan Ozbay, Bekir Bartin and Ozgur Ozturk, “Assessing the Safety Effects of Removing

Highway Mainline Barrier Toll Plazas”, Journal of Transportation Engineering, 2014, pp. 943-950.

[8] Marco Amorim, Antonio Lobo, Carlos Rodrigues and Antonio Couto, “Optimal location of electronic

toll gantries: The case of a Portuguese freeway,” ScienceDirect, 2014, pp. 880-889.

[9] Nale Zhao, Tongyan Qi, Lei Yu, Juwen Zhang and Pengpeng Jiang, “A Practical Method for

Estimating Traffic Flow Characteristic Parameters of Tolled Expressway Using Toll Data”,

ScienceDirect, The 9th International Conference on Traffic & Transportation Studies (ICTTS’2014),

2014, pp. 632-640.

[10] Joao Dias, Joao Nuno Matos and Arnaldo S. R. Oliveira, “The Charge Collector System”,

ScienceDirect, Conference on Electronics, Telecommunications and Computers – CETC, 2014, pp. 130-

137.

[11] Saurabh Vats, Gaurav Vats, Rahul Vaish and Varun Kumar, “Selection of optimal electronic toll

collection system for India: A subjective-fuzzy decision making approach”, Elsevier, Applied Soft

Computing 21, 2014, pp. 444-452.

89

[12] Yogesh Kamble, Ajinkya Abhyankar, Tanmay Pradhan and Aditya Thorat, “Check post and Toll Tax

Collection using RFID”, International Journal of Innovative Science (IJISET), Engineering &

Technology, vol. 1, issue 2, 2014, pp. 47-51.

[13] Anish Dhurat, Parag Magal, Manish Chheda and Darshan Ingle, “Gateless Electronic Toll Collection

using RFID”, IOSR Journal of Computer Engineering (IOSR-JCE), vol. 16, issue 2, ver. VI, 2014, pp.

73-80.

[14] S.Nandhini and P. Premkumar, “Automatic Toll Gate System Using Advanced RFID and GSM

Technology”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation

Engineering, vol. 3, issue 11, 2014, pp. 13002-13007.

[15] Priyanka Chhoriya, Govinda Paliwal and Poonam Badhan, “Image Processing Based Automatic Toll

Booth in Indian Conditions”, International Journal of Emerging Technology and Advanced Engineering,

vol. 3, issue 4, April 2013, pp. 2250-2459.

[16] R. M. Hushangabade and S.V. Dhopte, “Dynamic Approach towards Toll Tax Collection and

Vehicle Tracking with the Help of RFID”, International Journal of Engineering and Innovative

Technology (IJEIT), vol. 3, issue 1, 2013, pp. 368-371.

[17] Navin Kumar Chaudhary, Rabin Karmacharya, Binaya Ghimire, Dr.N. Srinivasu, “Stack Variation

In Push Down Automata”, International Journal of Engineering Trends and Technology (IJETT), vol. 04,

issue 5, 2013, pp. 1535-1539.

[18] Bihari T., Gopinath P. and Schwan K., “Object-Oriented Design of Real Time Software”, IEEE

Software Trans., pp. 194-201.

[19] Dr. S. P. Tripathi, Prof. J. B. Singh, Vivek Kr. Singh, “Design Mobile Data Logging Framework

using Ubiquitous Computing Environment”, International Journal of Hybrid Information Technology,

vol. 2, issue 4, October 2009.

[20] Pereira C., “Putting OO work: Results from Applying the Object-Oriented Paradigm during the

Development of Real Time Applications”, Fifth Euromicro Workshop on Real-time Systems Proceedings,

pp. 166-170.

[21] Md. Farhad Ismail and M.A.R. Sarkar, “Development of a Model for Electronic Toll-Collection

System”, I.J. Intelligent Systems and Applications, vol. 01, 2012, pp. 39-45.

[22] Kligerman E. and Stoyenko A., “Real Time Euclid: a Language for Reliable Real Time Systems”,

IEEE Trans. on Software Engineering, vol. SE-12, No. 9.

[23] Manuj Darbari, Rishi Asthana and Vivek Kr. Singh, “Integrating Fuzzy MDE-AT Framework for

Urban Traffic Simulation”, International Journal of Software Engineering (IJSE), vol. 1, issue 2, pp. 24-

31.

90

[24] Anneke G. Kleppe and Jos Warmer, “The Object Constraint Language: Precise Modeling with UML

(Addision-Wesley Object Technology Series)”.

[25] Bruce K. “A Pattern Language for Object RDBMS Integration, Knowledge System Group”.

[26] Dr. Khali Persad, Dr. C. Michael Walton and Shahriyar Hussain, “Toll Collection Technology and

Best Practices”, Project 0-5217: Vehicle/License Plate Identification for Toll Collection Applications,

2007.

[27] http://www.indiantollways.com/category/toll-management-system/

PLAGIARISM REPORT

(Checked By SmallSEOTool)

Page

Number

Unique Content %

iii 97

1-2 92

3-4 93

5-6 91

7-8 90

9-10 86

11-12 89

13-14 91

15-16 90

17-18 94

19-20 92

21-22 93

23-24 91

25-26 89

27-28 87

29-30 90

31-32 86

33-34 91

35-36 92

37-38 98

39-40 87

41-42 90

43-44 94

45-46 92

47-48 94

49-50 86

51-52 94

53-54 95

55-56 98

57-58 90

59-60 85

61-62 89

63-64 87

65-66 88

67-68 88

69-70 86

71-72 89

63-74 90

75-76 93

77-78 91

79 86

80-84 Skipped

85-86 88

87 100

Overall % unique content = 88% i.e.

12% Plagiarism

PUBLICATIONS

[1] Ravi Pratap Singh and Dr. V. K. Singh, “Online Toll Tax Database Management Model through

Push-Down Automata”, International Journal of Innovative Research in Computer and Communication

Engineering (IJIRCCE), vol. 4, issue 2, 2016, pp. 1323-1333.

Ravi Pratap Singh Contact : 9450261406

E-Mail : 786rps@gmail.com

I would like to utilize my experience and energetic attitude in teaching student with great enthusiasm.

I am looking for a challenging position as Lecturer to utilize my technical skills for the growth of the

Institution and students.

SYNOPSIS

 Pursuing M. Tech (Software Engineering) from BBD University, Lucknow (till 1
st
 year 80%)

 PG DAC from C-DAC, Pune.

 B. Tech (Information Technology).

 Qualifying the “Sun Certified Programmer for the Java Platform (SE 5.0)” examination and got the

SCJP Certificate.

 Topper in C-DAC during DAC course on J2EE module and got the certificate.

 An effective communicator with excellent relationship, management skills and strong analytical, problem

solving and organizational abilities.

PROJECT EXPERIENCES

M. Tech THESIS:

Topic : Enhancement of Online Toll-Tax Database Management model using PDA.

 Description : In this, we highlights the use of 2-Stack Push-Down Automata in maintaining the

vehicle records and provide the clustered view of them to make comparative analysis easier and faster. We

focus to provide a communicative framework that can record the vehicles coming from a particular state.

B. Tech PROJECT:

 Name : Secure Data Transfer.

Tools Used : Java and Oracle 10g.

DAC PROJECT:

 Name : Airlines Reservation System.

Tools Used : Microsoft .Net 4.0, ASP.Net, C#.Net, MS SQL Server 2008.

COMPUTER SKILLS

 Languages : C, C++, Java SE, Java EE, JSP, C#.Net, ASP.Net

 DBMS : PL/SQL, Oracle, SQL Server, MySql.

SUMMER TRAINING

 Name of Company : HP(Hewlett-Packard), IIIT-Allahabad

 Technology : J2EE

 Duration : 10th June 2010 to 25th July 2010.

ACADEMIA

 PG DAC(Diploma in Advanced Computing) from SunBeam Institute of Information Technology, Pune

in 2012.

 B.Tech (Information Technology) from UCER, Allahabad, with 67.84% in 2011.

 H.S.C. (U.P. Board) from SVN Inter College with 79.20% in 2005.

 S.S.C. (U.P. Board) from SVN Inter College with 74.33% in 2003.

AREA OF INTEREST

 Database Management Systems

 Object Oriented Programming Languages

 Operating Systems

 Automata

 Data Structure

PG DAC (Diploma in Advanced Computing)

It is the flagship programme of ACTS CDAC during which I polished my skills in:

 C, C++, OS Concepts, SE, Web Programming, DBT, Core Java, J2EE, MS .Net.

ACHIEVEMENTS & ACTIVITIES

 Participated in the Science Festival on “National Science Day” organized under the auspices of CST

U.P. Govt. and got the certificate.

 Winner of Inter Group Aptitude Competition and Inter Group HR Interview Competition during PG

DAC.

 Participated in the KABADDI game as the caption of team and got the certificate of excellence.

 Participated in a quiz contest in school and got the certificate (within top 5).

PERSONAL DETAILS

Date of Birth : Oct 02, 1989

Address : 10 C/A Nai Bazar, Naini - Allahabad

 U. P. (211008)

DECLARATION

I hereby declare that all the information mentioned above is true and correct to best of my knowledge and

belief.

Date :

Place : Lucknow Ravi Pratap Singh

BABU BANARASI DAS UNIVERSITY, LUCKNOW

CERTIFICATE OF THESIS SUBMISSION FOR EVALUATION

(Submit in Duplicate)

1. Name: ……………………………………………………………………...……………

2. Enrollment No. : ………………………………………………………………………..

3. Thesis title: …………………………………………………………………….………..

…………………………………………………………………………………..………….

……………………………….………………………………………...…………………..

4. Degree for which the thesis is submitted: ………………………………………………

5. Faculty of the University to which the thesis is submitted

.…………………………………………………………………………………

6. Thesis Preparation Guide was referred to for preparing the thesis. YES NO

7. Specifications regarding thesis format have been closely followed. YES NO

8. The contents of the thesis have been organized based on the YES NO

guidelines.

9. The thesis has been prepared without resorting to plagiarism. YES NO

10. All sources used have been cited appropriately. YES NO

11. The thesis has not been submitted elsewhere for a degree. YES NO

12. Submitted 2 spiral bound copies plus one CD. YES NO

(Signature of the Candidate)

Name: ………………………………..

Roll No ………………………………

Enrollment No: ………………………

BABU BANARASI DAS UNIVERSITY, LUCKNOW

CERTIFICATE OF FINAL THESIS SUBMISSION

(To be Submit in Duplicate)

1. Name: ……………………………………………………………………...……………

2. Enrollment No. : ………………………………………………………………………..

3. Thesis title: …………………………………………………………………….………..

…………………………………………………………………………………..………….

……………………………….………………………………………...…………………..

4. Degree for which the thesis is submitted: ………………………………………………

5. School (of the University to which the thesis is submitted)

.…………………………………………………………………………………

6. Thesis Preparation Guide was referred to for preparing the thesis. YES NO

7. Specifications regarding thesis format have been closely followed. YES NO

8. The contents of the thesis have been organized based on the YES NO

 guidelines.

9. The thesis has been prepared without resorting to plagiarism. YES NO

10. All sources used have been cited appropriately. YES NO

11. The thesis has not been submitted elsewhere for a degree. YES NO

12. All the corrections have been incorporated YES NO

13. Submitted 4 hard bound copies plus one CD. YES NO

(Signature of the Supervisor) (Signature of the Candidate)

Name: …………………………… Name: ………………………………..

Roll No ………………………………

Enrollment No: ………………………

	CERTIFICATE
	ABSTRACT
	ACKNOWLEDGMENT
	Turnstile Notation: The “turnstile” notation is used for connecting pairs of ID’s that represent one or many moves of a PDA. The process of transition is denoted by the turnstile symbol “⊢”. Consider a PDA (Q, ∑, Γ, δ, q0, Z0, F). A transition can be ...
	8.1.2.2 Types of Triggers
	BEFORE vs. AFTER Triggers

	Timing for Triggers: We can define the trigger timing i.e. whether the trigger action is to be run before or after the triggering statement. A simple trigger is a single trigger on a table that enables you to specify actions for exactly one of the fol...
	8.1.2.3 Advantages of Triggers
	8.1.2.4 Creation of Triggers
	Storage of Triggers: Oracle Database stores PL/SQL triggers in compiled form in a database schema, just like PL/SQL stored procedures. When a CREATE TRIGGER statement commits, the compiled PL/SQL code is stored in the database and the source code of t...
	JDBC Product Components: JDBC includes four components which are illustrated below:
	Steps involved in event handling:
	JFreeChart Features: The major features of JFreeChart library are listed below -
	Prerequisites for Use
	Create Dataset: The dataset used by bar chart is of type org.jfree.data.category. CategoryDataset. Similar to default implementation for pie chart dataset, there is default implementation class for this dataset as well. The class is named as org.jfree...
	Create Bar Chart: Similar to the pie chart creation method, ChartFactory has a method to create bar chart as well. The method name is createBarChart(). This method has few additional properties. These are used to customize the bar chart. The following...
	Displaying Chart: Since we are going to display the chart in frame as well hence the display part of code would remain the same. We just have to pass the bar chart instance reference instead of pie chart. The following code snippet is used for that:

	E-Mail : 786rps@gmail.com

